崔闯

副教授

博士生导师

入职时间:2019-07-02

学历:博士研究生毕业

学位:工学博士学位

办公地点:西南交通大学 土木馆1510

性别:男

在职信息:在岗

主要任职:Associate Professor

毕业院校:西南交通大学

所在单位:土木工程学院

其他联系方式:

传真:

通讯/办公地址:

办公室电话:

科学研究

当前位置: 中文主页 >> 科学研究
科学研究


    科学研究


        主要从事钢桥疲劳失效机制与性能评估、传感材料研发与性态演化智能监测检测研究,近年来参与完成了深中通道、武汉青山长江大桥、武汉军山长江大桥、宜昌伍家岗长江大桥、常泰长江大桥等多个重大工程项目的疲劳试验、传感器研发与智能监测等相关的科研实践,取得了多项创新性研究成果。本人及所在的研究团队在钢桥疲劳致损机制、疲劳损伤监测检测及维护等领域的研究工作,得到了国家自然科学基金、国家重点研发计划和重点工程项目攻关研究专项等的资助:

    [1]国家自然基金面上项目—钢桥复杂构造疲劳裂纹的三维随形纳米涂层传感与智能监测(项目批准号:52378316,在研,主持)

    [2]国家自然基金面上项目—在役钢桥的疲劳损伤状态重构与剩余寿命预测方法(项目批准号:52278318,在研,主研)

    [3]国家重点研发计划—焊接截面耐候桥梁钢、不锈钢复合板构件及节点力学及服役性能评价(项目批准号:2022YFB3706405,在研,主持)

    [4]国家自然基金青年项目—细微观初始缺陷对钢桥焊接节点疲劳抗力的跨尺度劣化机制与量化方法(项目批准号:52108176,在研,主持)

    [5]国家自然基金面上项目—在役铆接钢桁梁桥疲劳性能的经时演化机理与剩余寿命评估方法研究(项目批准号:51978579,在研,主研)

    [6]国家自然基金面上项目—新型高性能正交异性钢桥面板的疲劳失效机理与结构体系疲劳抗力研究(项目批准号:51878561,已结题,主研)

    [7]四川省交通运输科技项目—公路钢桥疲劳损伤智能监测与评估关键技术研究(项目批准号:2020-B-02,在研,主研)

    [8]四川省科技计划项目—基于计算机视觉的钢桥病害智能检测机器人关键技术研究(项目批准号:2021YJ0037,已结题)

    [9]国家重点工程建设项目重大科技攻关研究专项—常泰长江大桥疲劳损伤的智能监测、诊断评估及维护关键技术(在研,主研)

    [10]国家重点工程建设项目重大科技攻关研究专项—超饱和交通荷载与温度荷载耦合作用下南沙大桥钢箱梁疲劳智能监测与评估(在研,主研)

    [11]国家重点工程建设项目重大科技攻关研究专项—独塔斜拉-自锚式组合体系悬索桥设计与智能建造关键技术研究(在研,主研)

    [12]国家重点工程建设项目重大科技攻关研究专项—钢梁大节段拼装误差传播机理与虚拟预拼装技术研究(在研,主研)







            


论文成果


    近年来发表的论文


    英文文献:

    [1] Han S, Cui C*, Zheng Q, et al. Effect of ultrasonic impact treatment on welding residual stress and fatigue resistance of doubly-welded rib-to-deck joints in OSD[J]. Journal of Constructional Steel Research, 2023, 211: 108157.

    [2] Zhang X, Cui C*, Chen J, et al. Electrical properties of low temperature-sensitive coating sensor for fatigue crack monitoring in steel bridges[J]. Construction and Building Materials, 2023, 406: 133422.

    [3] Li Q, Cui C*, Huang Q, et al. Sprayed piezoresistive flexible composite coating sensor for measuring strain measurement in steel structures[J]. Case Studies in Construction Materials, 2023: e02509.

    [4] Zhang D, Cui C*, Zhang X, et al. Monitoring fatigue cracks in rib-to-deck joints of orthotropic steel deck using ultrasonic Lamb waves[J]. Thin-Walled Structures, 2023, 189: 110922.

    [5] Cui C*, Hu W Z, Liu W, et al. Fatigue tests and optimization for a new rib-to-diaphragm joint in orthotropic steel deck[J]. Structures. 2023, 53: 501-513.

    [6] Li M, Cui C*, Yuan X, et al. A unified fatigue life evaluation method for different failure modes of the repaired rib-to-deck joints in orthotropic steel decks[J]. International Journal of Fatigue, 2023: 107750.

    [7] Lao W, Cui C*, Zhang D, et al. Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures[J]. Structural Control and Health Monitoring, 2023, 2023.

    [8] Cui C, Hu J, Zhang X, et al. Fatigue test and failure mechanism of new rib-to-floorbeam welded joints in OSDs[J]. Journal of Constructional Steel Research, 2023, 203: 107835.

    [9] Deng P, Cui C*, Cheng Z, et al. Fatigue damage prognosis of orthotropic steel deck based on data-driven LSTM[J]. Journal of Constructional Steel Research, 2023, 202: 107777.

    [10] Li M, Cui C*, Wang H, et al. Fatigue behavior and remaining life evaluation of rib-to-deck joints using interior repair welds[J]. Thin-Walled Structures, 2023, 183: 110378.

    [11] Bu Y, Li M, Wei C, et al. Experimental and analytical studies on flexural behavior of composite bridge decks with orthotropic steel deck and ultra-high-performance concrete (UHPC) slab under negative moment[J]. Engineering Structures, 2023, 274: 115190.

    [12] Wei C, Zhang Q, Zhou Y, et al. Static and fatigue behaviors of short stud connectors embedded in ultra-high performance concrete[J]. Engineering Structures, 2022, 273: 114888.

    [13] Da L, Zhang Q, Yuan D, et al. A new orthotropic steel deck system incorporating two novel structural details[J]. Journal of Constructional Steel Research, 2022, 199: 107633.

    [14] Xu W, Cui C*, Luo C, et al. Fatigue crack monitoring of steel bridge with coating sensor based on potential difference method[J]. Construction and Building Materials, 2022, 350: 128868.

    [15] Yuan D, Cui C*, Zhang Q, et al. Influence of resin asphalt pavement on stress behaviors of double-side welded rib-to-deck joints in orthotropic steel decks[J]. Journal of Constructional Steel Research, 2022, 197: 107491.

    [16] Cui C*, Ma Y, Zhang Q, et al. Fatigue strength and crack growth of double-side welded rib-to-deck joint in orthotropic steel decks[J]. Journal of Constructional Steel Research, 2022, 196: 107444.

    [17] Yuan D, Cui C*, Zhang Q, et al. Fatigue damage evaluation of welded joints in steel bridge based on meso-damage mechanics[J]. International Journal of Fatigue, 2022, 161: 106898.

    [18] Cui C*, Xu Y L, Zhang Q H. Multiscale fatigue damage evolution in orthotropic steel deck of cable-stayed bridges[J]. Engineering Structures, 2021, 237: 112144.

    [19] Zhang Q, Ma Y, Cui C*, et al. Experimental investigation and numerical simulation on welding residual stress of innovative double-side welded rib-to-deck joints of orthotropic steel decks[J]. Journal of Constructional Steel Research, 2021, 179: 106544.

    [20] Cui C, Xu Y L*, Zhang Q H, et al. Vehicle-induced dynamic stress analysis of orthotropic steel decks of cable-stayed bridges[J]. Structure and Infrastructure Engineering, 2020, 16(8): 1067-1081.

    [21] Cui C, Xu Y L*, Zhang Q H, et al. Vehicle-induced fatigue damage prognosis of orthotropic steel decks of cable-stayed bridges[J]. Engineering Structures, 2020, 212: 110509.

    [22] Cui C, Zhang Q*, Bao Y, et al. Residual stress relaxation at innovative both-side welded rib-to-deck joints under cyclic loading[J]. Journal of Constructional Steel Research, 2019, 156: 9-17.

    [23] Cui C, Zhang Q*, Bao Y, et al. Fatigue life evaluation of welded joints in steel bridge considering residual stress[J]. Journal of Constructional Steel Research, 2019, 153: 509-518.

    [24] Cui C, Zhang Q*, Hao H, et al. Influence of asphalt pavement conditions on fatigue damage of orthotropic steel decks: parametric analysis[J]. Journal of Bridge Engineering, 2018, 23(12): 04018093.

    [25] Cui C, Zhang Q*, Bao Y, et al. Fatigue damage evaluation of orthotropic steel deck considering weld residual stress relaxation based on continuum damage mechanics[J]. Journal of Bridge Engineering, 2018, 23(10): 04018073.

    [26] Cui C, Zhang Q*, Bao Y, et al. Fatigue performance and evaluation of welded joints in steel truss bridges[J]. Journal of Constructional Steel Research, 2018, 148: 450-456.

    [27] Cui C, Zhang Q*, Luo Y, et al. Fatigue reliability evaluation of deck-to-rib welded joints in OSD considering stochastic traffic load and welding residual stress[J]. International journal of fatigue, 2018, 111: 151-160.

    [28] Cui C, Bu Y*, Bao Y, et al. Strain energy-based fatigue life evaluation of deck-to-rib welded joints in OSD considering combined effects of stochastic traffic load and welded residual stress[J]. Journal of Bridge Engineering, 2018, 23(2): 04017127.

    [29] Zhang Q, Cheng Z, Cui C, et al. Analytical model for frictional resistance between cable and saddle of suspension bridges equipped with vertical friction plates[J]. Journal of Bridge Engineering, 2017, 22(1): 04016103.

    [30] Zhang Q H, Cui C*, Bu Y Z, et al. Fatigue tests and fatigue assessment approaches for rib-to-diaphragm in steel orthotropic decks[J]. Journal of Constructional Steel Research, 2015, 114: 110-118.

    中文文献:

    [1] 胡文哲,崔闯*,王昊等.基于多目标进化算法的多尺度有限元模型更新方法[J].工业建筑,2023,53(08):161-167.

    [2] 劳武略,崔闯*,张登科等.基于计算机视觉的钢桥面板裂纹识别方法[J].中国公路学报,2023,36(03):188-201.

    [3] 杨正祥,崔闯*,胡文哲等.铁路钢桥抗火性能和极限承载力研究[J].铁道学报,2023,45(03):70-79.

    [4] 胡宇豪,苗鸿臣,张清华等.基于水平剪切导波的钢桥面板疲劳裂纹在线识别方法[J].固体力学学报,2023,44(04):458-469.

    [5] 卜一之,安朗,崔闯*.基于Fe-SMA的钢桥面板疲劳裂纹装配式主动加固方法[J].交通运输工程学报,2022,22(06):84-94.

    [6] 贾东林,张清华,陈李桥等.随机腐蚀作用下在役钢桥疲劳抗力概率密度演化方法[J].中国公路学报,2023,36(05):163-174.

    [7] 张清华*,张登科,崔闯.基于超声导波的钢桥面板纵肋对接焊缝疲劳裂纹检测方法[J].中国公路学报,2022,35(06):101-112.

    [8] 张清华*,笪乐天,李明哲等.基于多失效模式损伤度相容的钢桥面板抗疲劳设计方法[J].土木工程学报,2022,55(12):80-93.

    [9] 张清华*,劳武略,崔闯.钢结构桥梁疲劳2020年度研究进展[J].土木与环境工程学报(中英文),2021,43(S1):79-90.

    [10] 崔闯*,杨正祥,王昊等.桥梁抗爆与抗火2020年度研究进展[J].土木与环境工程学报(中英文),2021,43(S1):207-221.

    [11] 张清华,袁道云,李俊等.高疲劳抗力钢桥面板的疲劳问题Ⅱ:结构体系抗力[J].中国公路学报,2021,34(11):104-115.

    [12] 张清华,李俊,袁道云等.高疲劳抗力钢桥面板的疲劳问题Ⅰ:模型试验[J].中国公路学报,2021,34(03):124-135.

    [13] 张清华,李俊,袁道云等.深圳至中山跨江通道钢桥面板结构疲劳试验研究[J].土木工程学报,2020,53(11):102-115.

    [14] 张清华,崔闯*,卜一之等.钢结构桥梁疲劳2019年度研究进展[J].土木与环境工程学报(中英文),2020,42(05):147-158.

    [15] 张清华,崔闯*,魏川等.钢桥面板疲劳损伤智能监测与评估系统研究[J].中国公路学报,2018,31(11):66-77+112.

    [16] 崔闯,卜一之*,李俊等.钢箱梁面板与U肋焊接残余应力的分布特性[J].西南交通大学学报,2018,53(02):260-265.

    [17] 刘益铭,张清华,张鹏等.港珠澳大桥正交异性钢桥面板U肋对接焊缝疲劳寿命研究[J].中国公路学报,2016,29(12):25-33.

    [18] 崔闯,张清华*,程震宇等.基于应变能的纵肋与横肋连接多轴疲劳评估方法[J].中国公路学报,2016,29(12):44-50.

    [19] 李丽娟*,崔闯,卜一之等.铺装层对正交异性钢桥面板疲劳性能影响效应研究[J].世界桥梁,2016,44(05):48-52.

    [20] 刘益铭,张清华*,崔闯.正交异性钢桥面板三维疲劳裂纹扩展数值模拟方法[J].中国公路学报,2016,29(07):89-95.

    [21] 张清华*,郭伟峰,崔闯.新型大纵肋正交异性钢混凝土组合桥面板疲劳特性研究[J].公路,2015,60(12):71-77.

    [22] 崔闯*,刘益铭,廖贵星等.正交异性钢桥面板焊接接头疲劳评估方法[J].西南交通大学学报,2015,50(06):1011-1017.

    [23] 杨绍林,卜一之*,崔闯.U肋对接焊缝三维疲劳裂纹应力强度因子分析[J].桥梁建设,2015,45(05):54-59.

    [24] 卜一之*,王一莹,崔闯.新型正交异性钢桥面板关键部位疲劳性能研究[J].世界桥梁,2015,43(05):20-24.

    [25] 崔闯,卜一之*,张清华.正交异性钢桥面板焊缝疲劳性能评估方法[J].中国公路学报,2015,28(07):52-57+76.

    [26] 卜一之*,杨绍林,崔闯.轮迹横向分布对钢桥面板疲劳应力幅的影响[J].桥梁建设,2015,45(02):39-45.

    [27] 张清华*,崔闯,卜一之等.正交异性钢桥面板足尺节段疲劳模型试验研究[J].土木工程学报,2015,48(04):72-83.

    [28] 孟凡超,苏权科,卜一之等.正交异性钢桥面板的抗疲劳优化设计研究[J].公路,2014,59(10):1-6.

    [29] 张清华*,崔闯,卜一之等.港珠澳大桥正交异性钢桥面板疲劳特性研究[J].土木工程学报,2014,47(09):110-119.

    [30] 黄云,张清华*,叶华文等.钢管混凝土系杆拱桥空间稳定性分析[J].桥梁建设,2014,44(04):50-56.

    [31] 崔闯,卜一之,张清华等.基于热点应力法的正交异性钢桥面板疲劳寿命评估[J].桥梁建设,2014,44(04):62-67.




报考该导师研究生的方式

欢迎你报考崔闯老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择崔闯老师,你的所有申请信息将发送给崔闯老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请崔闯老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为崔闯老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考崔闯老师招收的专业和方向,进入复试后提交导师意向时选择崔闯老师。

4、如果你有兴趣攻读崔闯老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭