博士生导师
硕士生导师
个人信息Personal Information
教师英文名称:ZHAO Chunfa
学历:博士研究生毕业
学位:工学博士学位
性别:男
主要任职:Professor
毕业院校:西南交通大学
学科:交通运输工程. 车辆工程. 载运工具运用工程
所在单位:轨道交通运载系统全国重点实验室
报考该导师研究生的方式
欢迎你报考赵春发老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择赵春发老师,你的所有申请信息将发送给赵春发老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请赵春发老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为赵春发老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考赵春发老师招收的专业和方向,进入复试后提交导师意向时选择赵春发老师。
4、如果你有兴趣攻读赵春发老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
-
国家及省部级科研课题:
高温超导电动悬浮列车磁轨相互作用基础研究
超导电动悬浮磁轨耦合作用基础理论及动力学设计方法
超导电动磁浮列车-轨道-桥梁动态相互作用机制及系统参数匹配原理
高速磁浮车辆动力学性能匹配设计理论与技术
长定子中速磁浮车轨桥系统多场耦合动力学特性与规律研究
永磁悬浮车辆-轨道梁耦合振动特性研究
重载铁路有砟轨道-路基细宏观力学行为与服役性能演变研究
磁浮列车振动建模与动力学分析
磁浮道岔动力性能测试及评估
高速磁浮常用跨度轨道梁刚度和动力特性设计参数研究
高速磁浮线路动力学设计理论与应用研究
磁浮列车过岔动力学理论与仿真研究
磁浮列车-桥梁-控制器耦合系统振动理论、数值仿真与参数优化研究
高速磁浮车线耦合动力学研究
高速铁路基础结构动态性能演变及服役安全基础研究
高速铁路线路几何状态演变规律及线路谱表征
高速铁路散体道床力学行为、劣化机理及变形规律研究
高速轨道交通若干基础力学问题研究
列车与轨道动态相互作用安全设计
超导磁悬浮列车系统动力学研究
列车-线路-桥梁动力学仿真通用软件的研究
磁浮列车动力学仿真软件可靠性与应用评估
TR08车辆系统(含轨道)动力学建模与仿真研究
上海TR08磁浮车辆乘坐舒适性测试与评价
磁悬浮车辆/轨道系统动力学研究
其他科研课题:
超导电动磁浮车轨桥隧耦合动力学特性及参数匹配研究
常导电磁高速磁浮板式轨道动力学性能分析研究
时速600公里常导高速磁浮交通风-车-桥动态相互作用特性及行车安全控制
高速磁浮交通车辆动力学虚拟模型与协同技术仿真技术
中低速磁浮车-轨-桥耦合动力性能试验测试
中速磁浮列车车轨耦合动力学精细化仿真与振动控制技术研究
高速磁浮列车噪声测试
中低速磁浮交通车-轨-桥耦合动力学仿真分析
重载铁路桥上有砟轨道偏心机理及防治措施
清远磁浮线工程磁浮车岔耦合振动分析
凤凰磁浮旅游线车辆与U型轨道梁耦合振动分析
高速飞行列车系统动力学仿真分析
高速磁浮车辆动力学仿真及多目标多参数优化
磁浮道岔优化创新及选型研究
基于第二代悬浮架技术的中低速磁浮车轨桥耦合振动分析研究
中低速磁浮轨道结构设计理论与方法及其应用研究
中低速磁浮轨道交通轨道结构及关键技术研究
上海磁浮线门架墩及车站轨道梁动力学测试
重载铁路轨道结构动态性能演变及其关键部件失效机理研究
高速磁浮列车舒适性测试
智能检测道床阻力稳定控制关键技术研究
磁悬浮列车转向架技术及车轨耦合振动研究
齿轨列车动载作用下120‰坡道有砟轨道动力学试验研究
-
高速铁路基础结构动态性能演变及服役安全的基础科学问题. 中国科学: 技术科学, 2014, 44(7): 645–660.
现代轨道交通工程科技前沿与挑战. 西南交通大学学报, 2016, 51(2): 209-226.
面向列车稳定舒适运行的磁浮交通车线动力学参数匹配设计. 前瞻科技, 2023, 2(4): 49-60.
磁浮车辆/轨道系统动力学(I): 磁/轨相互作用及稳定性, 机械工程学报, 2005, 41(7): 1-10.
磁浮车辆/轨道系统动力学(II): 建模与仿真, 机械工程学报, 2005, 41(8):163-175.
磁悬浮车辆/高架桥垂向耦合动力学研究. 铁道学报, 2001, 23(5): 27-33.
磁悬浮车辆系统动力学研究. 中国铁道科学, 2003, 24(4): 138-141.
Maglev vehicle/guideway vertical random response and ride quality. Vehicle System Dynamics, 2002, 38(3): 185-210.
磁悬浮车辆随机振动响应分析及其平稳性研究. 中国机械工程, 2002,13(16): 1402-1406.
常导电磁悬浮动态特性研究. 西南交通大学学报, 2004, 39(4): 464-468.
Vibration attenuation research on superconducting EDS with active electromagnetic damping coils based on refined magnetic-electric-mechanical interaction model[J]. Mechanical Systems and Signal Processing, 2025, 224:112081.
Mechanical behavior and performance evolution of railway ballast track under dynamic stabiliser based on the hybrid MBD-DEM simulation[J]. Transportation Geotechnics, 2024, 46: 101264.
Dynamic impact of unsupported sleepers on railway infrastructure with a coupled MBD-DEM-FDM model[J]. Transportation Geotechnics, 2024, 45: 101221.
Suspension and guidance performance of a new superconducting EDS system using the 8-shaped ground coils with nonequal turns[J]. IEEE Transactions on Applied Superconductivity, 2024, 34(4): 1-11, Art no. 3601511.
Dynamic impact of sleeper unsupported defects on the heavy haul locomotive-ballasted track coupling system[J]. Soil Dynamics and Earthquake Engineering 2024, 176: 108292.
Mechanical behaviors of the U-girder for urban maglev transit under temperature loads and train loads[J]. Journal of Vibration and Control. 2023.
Dynamic behavior of railway Vehicle-Ballasted track system with unsupported sleepers based on the hybrid DEM-MBD method[J]. Construction and Building Materials, 2023, 394: 132091.
两种中低速磁浮车辆动力学性能仿真对比分析[J]. 机械工程学报, 2023, 59(10): 311-322.
A modified electromagnetic force calculation method has high accuracy and applicability for EMS Maglev vehicle dynamics simulation. ISA Transactions, 2023, 137: 186-198.
Effect of levitation gap feedback time delay on the EMS maglev vehicle system dynamic response. Nonlinear Dynamics, 2023, 111: 7137-7156.
Dynamic performance of medium speed maglev train running over girders: field test and numerical simulation. International Journal of Structural Stability and Dynamics, 2023, 23(1): 2350006.
Propagation characteristics of vibration induced by medium-low-speed maglev train running on subgrade. Transportation Geotechnics, 2023, 41: 100986.
Dynamic deformation behaviors of the levitation electromagnets of high-speed maglev vehicle negotiating a sharp horizontal curve. Sensors, 2023, 23(5), 2785.
高速磁浮车辆通过平面曲线时悬浮架和电磁铁的弹性变形分析. 机车电传动, 2022, (04): 1-8.
Maglev vehicle-switch girder coupled vibration characteristics analysis based on distributed co-simulation, Vehicle System Dynamics, 2022, 61(5): 1345-1366.
Numerical analysis of train-track-subgrade dynamic performance with crumb rubber in ballast layer. Construction and Building Materials, 2022, 336: 127559.
Ground vibration induced by maglev trains running inside tunnel: numerical modelling and experimental validation. Soil Dynamics and Earthquake Engineering, 2022, 157: 107278.
Influence of bolster-hanger length on the dynamic performance of high-speed EMS maglev vehicles. Vehicle System Dynamics, 2021, 60(11): 3743-3764.
Numerical study on the flow field characteristics of the new high-speed maglev train in open air[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2020, 21(5): 366–381.
高速磁浮列车动力学性能参数多目标优化方法研究. 机械科学与技术, 2022, 41(3): 466-472.
桥梁竖向变形引起的中低速磁浮轨道不平顺分析. 铁道标准设计, 2021, 65(6): 77-82.
中低速磁浮车辆与U型梁耦合振动响应. 同济大学学报(自然科学版), 2021, 49(12) :1678-1687.
高速磁浮车辆通过小半径曲线时的动力学响应分析. 铁道机车车辆, 2020, 40(4): 1-5+20.
小半径竖曲线上磁浮车辆空气弹簧动态响应分析. 振动与冲击,2020, 39(17) :99-105.
超导磁浮列车电动悬浮导向力学特性研究. 机械, 2020, 47(9): 25-32.
Analysis of Railway Ballasted Track Stiffness and Behavior with a Hybrid Discrete–Continuum Approach. International Journal of Geomechanics, 2021, 21(3): 04020268.
Discrete element modelling of railway ballast performance considering particle shape and rolling resistance. Railway Engineering Science, 2020, 28(4): 382-407.
Macro-meso dynamic analysis of railway transition zone: Hybrid DEM/FDM simulation and experimental validation. Soil Dynamics and Earthquake Engineering, 2020, 135: 106191.
Calibration for discrete element modelling of railway ballast: a review. Transportation Geotechnics, 2020, 23: 100341.
Coupled discrete-continuum approach for railway ballast track and subgrade macro-meso analysis. International Journal of Pavement Engineering, 2021, 22(13): 1744-1759.
Analysis on dynamic performance of different track transition forms using the discrete element/finite difference hybrid method. Computers & Structures, 2020, 230: 106187.
Experimental investigation on the characteristics of the dynamic rail pad force and its stress distribution in the time and frequency domain [J]. Journal of Rail and Rapid Transit, 2020, 234(2): 201-213.
Investigation of track settlement and ballast degradation in the high-speed railway using a full-scale laboratory test. Journal of Rail and Rapid Transit, 2019, 233(8): 869-881.
Importance of load frequency in applying cyclic loads to investigate ballast deformation under high-speed train loads [J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 28-38.
磁浮交通系统动力学分布式协同仿真接口的设计与实现. 计算机应用, 2019, 39(S1): 164-167.
中低速磁浮车辆-轨道-桥梁垂向耦合振动仿真分析. 铁道标准设计, 2019, 63(2): 70-76.
重载铁路有砟道床动态行为的离散元模拟与试验研究. 铁道学报, 2019, 41(4): 169-176.
温度梯度荷载作用下CRTS II型板式无砟轨道砂浆层界面损伤分析. 中国科学: 技术科学, 2018, 48(1):79-86.
Dynamic behavior analysis of high-speed railway ballast under moving vehicle loads using discrete element method. International Journal of Geomechanics, 2017, 17(7): 04016157.
铁路有砟道床振动和变形的离散元模拟与试验验证. 岩土力学, 2017, 38(5): 1481-1488.
循环荷载频率对高速铁路有砟道床累积变形行为的影响. 中国铁道科学, 2017, 38(1): 1-8.
铁路轨道不平顺研究进展. 铁道工程学报, 2016, (9): 35-40+81.
温差和列车荷载作用下中低速磁浮轨道结构变形分析. 铁道建筑, 2015, (12): 110-115.
高速铁路碎石道砟振动的离散元模拟. 计算力学学报, 2015, 32(5): 674-680.
铁路碎石道砟静态压碎行为数值模拟分析. 西南交通大学学报, 2015, 50(1): 137-143.
Temperature-induced deformation of CRTS II slab track and its effect on track dynamical properties. Science China Technological Sciences, 2014, 57(10): 1917-1924.
低速磁浮轨道梁的温度效应分析. 铁道标准设计, 2013(10): 73-77.
低速磁浮交通轨道结构强度计算与分析. 铁道标准设计, 2012(10): 4-7.
磁浮列车对某枢纽磁浮站屋荷载作用特性研究. 山西建筑, 2010, 36(19): 268-269.
高速磁浮车辆引起地面振动的数值分析. 西南交通大学学报,2010, 45(6): 825-829.
磁浮道岔梁自振特性及瞬态响应分析. 交通运输工程与信息学报, 2009, 7(4):56-62.
高速磁浮车辆悬浮架动力学模型研究. 铁道科学与工程学报, 2008, 5(5):7-11.
高速磁浮车辆弹性悬浮架动力学建模与仿真. 系统仿真学报,2008, 20(20): 5718-5721.
低速磁浮车辆动力学建模与导向机构仿真分析,交通运输工程学报,2007,7(3): 6-10.
低速磁浮车辆导向方式及其横向动态特性. 中国铁道科学, 2005, 26(6): 28-32.
低速磁浮车辆曲线通过动态响应仿真分析. 中国铁道科学, 2005, 26(3): 94-98.
磁浮列车与轮轨高速列车对线桥动力作用的比较研究. 交通运输工程学报, 2001, 1 (1): 7-12.
-
磁浮列车与线路理论及技术,轨道交通工程动力学,轨道结构振动与变形控制,铁路运维装备智能化
- 暂无内容