个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度力学,宏微观力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料,材料的增强与增韧

2022

当前位置: 多尺度材料力学 >> 团队新闻 >> 2022

2022-03-31 合作论文“Thermo-mechanically coupled sliding contact shakedown analysis of functionally graded coating-substrate structures”在International Journal of Mechanical Sciences在线发表

发布时间:2022-03-31  

Highlights

•A multi-layered model of functionally graded (FG) coating-substrate structures is established.


•The thermo-mechanical coupled contact shakedown map of FG structures is obtained.


•Temperature-dependent yield stress and friction coefficient are considered.


•The influences of friction heat on the shakedown map of FG structures are discussed.


Abstract

The sliding contact shakedown map composed of elastic shakedown limit and elastic limit is significant to the further optimization of functionally graded (FG) coating parameters. The friction heat induced by the relative sliding velocity of contact pairs can cause thermal stress and changes in contact parameters. Nevertheless, the influence of thermo-mechanically coupled effect on the sliding contact shakedown map of FG coating-substrate structures keeps unrevealed. Therefore, a mathematical optimization model is proposed to draw the shakedown map considering the temperature-dependent friction coefficient and yield stress. Based on the thermo-elasto-perfectly plastic material model and multilayered approximation of FG coating, the required thermo-elastic stress field with the temperature-dependent friction coefficient is obtained by employing the conjugate gradient method and discrete convolution-fast Fourier transform algorithm. The results show that the friction heat can cause the decreases of elastic shakedown limit and elastic limit, and increasing the sliding velocity can enhance the decreases. Moreover, the friction heat can elevate the residual tensile stress near the surface and weaken the residual compressive stress at a large depth from the surface. Meanwhile, the temperature-dependence of friction coefficient can cause the increases of elastic shakedown limit and elastic limit, but the introduction of temperature-dependent yield stress brings no obvious change to the shakedown curves due to the slight thermally-induced change of yield stress. Additionally, decreasing the distribution gradient index can not only improve elastic limit and elastic shakedown limit at large friction coefficients, but also reduce the distribution of residual tensile stress near the surface.


Link

https://doi.org/10.1016/j.ijmecsci.2022.107241