张旭

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度与微纳米力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料

报考该导师研究生的方式

欢迎你报考张旭老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。

4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

2022

当前位置: 多尺度材料力学 >> 团队新闻 >> 2022

2022-03-31 合作论文“Thermo-mechanically coupled sliding contact shakedown analysis of functionally graded coating-substrate structures”在International Journal of Mechanical Sciences在线发表

Highlights

•A multi-layered model of functionally graded (FG) coating-substrate structures is established.


•The thermo-mechanical coupled contact shakedown map of FG structures is obtained.


•Temperature-dependent yield stress and friction coefficient are considered.


•The influences of friction heat on the shakedown map of FG structures are discussed.


Abstract

The sliding contact shakedown map composed of elastic shakedown limit and elastic limit is significant to the further optimization of functionally graded (FG) coating parameters. The friction heat induced by the relative sliding velocity of contact pairs can cause thermal stress and changes in contact parameters. Nevertheless, the influence of thermo-mechanically coupled effect on the sliding contact shakedown map of FG coating-substrate structures keeps unrevealed. Therefore, a mathematical optimization model is proposed to draw the shakedown map considering the temperature-dependent friction coefficient and yield stress. Based on the thermo-elasto-perfectly plastic material model and multilayered approximation of FG coating, the required thermo-elastic stress field with the temperature-dependent friction coefficient is obtained by employing the conjugate gradient method and discrete convolution-fast Fourier transform algorithm. The results show that the friction heat can cause the decreases of elastic shakedown limit and elastic limit, and increasing the sliding velocity can enhance the decreases. Moreover, the friction heat can elevate the residual tensile stress near the surface and weaken the residual compressive stress at a large depth from the surface. Meanwhile, the temperature-dependence of friction coefficient can cause the increases of elastic shakedown limit and elastic limit, but the introduction of temperature-dependent yield stress brings no obvious change to the shakedown curves due to the slight thermally-induced change of yield stress. Additionally, decreasing the distribution gradient index can not only improve elastic limit and elastic shakedown limit at large friction coefficients, but also reduce the distribution of residual tensile stress near the surface.


Link

https://doi.org/10.1016/j.ijmecsci.2022.107241