张旭

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度力学,宏微观力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料,材料的增强与增韧

报考该导师研究生的方式

欢迎你报考张旭老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。

4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 多尺度材料力学 >> 科学研究 >> 论文成果

一、期刊论文

        百度云盘分享:https://pan.baidu.com/s/1Gj_hbtGz0To56nicn30zng?pwd=mmmm

        腾讯微云分享:https://share.weiyun.com/fJscP8kJ

(1)代表性英文论文

  1.  Geometrically necessary dislocations and related kinematic hardening in gradient grained materials: A nonlocal crystal plasticity study

    X. Zhang*+, J. Zhao+, G. Kang, M. Zaiser*, 

    International Journal of Plasticity 163 (2023) 103553.

  2. Multiscale discrete dislocation dynamics study of gradientnano-grained materials

    S. Lu, J. Zhao, M. Huang, Z. Li, G. Kang, X. Zhang*,

    International Journal of Plasticity, 156 (2022) 103356

    https://doi.org/10.1016/j.ijplas.2022.103356

  3. Multiple-mechanism and microstructure-based crystal plasticity modeling for cyclic shear deformation of TRIP steel

    Y. Gui, D. An, F. Han, X. Lu, G. Kang, X. Zhang*,

    International Journal of Mechanical Sciences, 222(8) (2022) 107269

    https://doi.org/10.1016/j.ijmecsci.2022.107269

  4. Temperature effect on tensile behavior of an interstitial high entropy alloy: crystal plasticity modeling

    X. Zhang*, X. Lu, J. Zhao, Q. Kan, Z. Li, G. Kang*

    International Journal of Plasticity, 150 (2022) 103201

    https://doi.org/10.1016/j.ijplas.2021.103201

  5. Size-dependent yield stress in ultrafine-grained polycrystals: A multiscale discrete dislocation dynamics study

    S. Lu, Q. Kan, M. Zaiser, Z. Li, G. Kang, X. Zhang*,

    International Journal of Plasticity, 149 (2022) 103183

    https://doi.org/10.1016/j.ijplas.2021.103183

  6. Size-dependent plasticity of hetero-structured laminates: a constitutive model considering deformation heterogeneities,

    J. Zhao, M. Zaiser, X. Lu, B. Zhang, C. Huang, G. Kang, X. Zhang*,

    International Journal of Plasticity, 145 (2021) 103063. 

    https://doi.org/10.1016/j.ijplas.2021.103063

    https://mp.weixin.qq.com/s/nXd_0hfgAVBEOG30recakA

  7. Effects of high entropy and twin boundary on the nanoindentation of CoCrNiFeMn high-entropy alloy: A molecular dynamics study,

    S. Shuang, S. Lu, B. Zhang, C. Bao, Q. Kan, G. Kang, X. Zhang*

    Computational Materials Science, 195 (2021) 110495. (Editor's Choice)

    https://doi.org/10.1016/j.commatsci.2021.110495

  8. Dislocation–grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations, 

    X. Zhang, S. Lu, B. Zhang, X. Tian, Q. Kan, G. Kang*, 

    Acta Materialia, 202 (2021) 88-98.

    https://doi.org/10.1016/j.actamat.2020.10.052

  9. The combined and interactive effects of orientation, strain amplitude, cycle number, stacking fault energy and hydrogen doping on microstructure evolution of polycrystalline high-manganese steels under low-cycle fatigue,

    D. An*, X. Zhang*, S. Zaefferer, 

    International Journal of Plasticity, 134 (2020) 102803. 

    https://doi.org/10.1016/j.ijplas.2020.102803

  10. Cyclic plasticity of an interstitial high-entropy alloy: Experiments, crystal plasticity modeling, and simulations,

    X. Lu, J. Zhao, C. Yu, Z. Li, Q. Kan, G. Kang, X. Zhang*

    Journal of the Mechanics and Physics of Solids, 142 (2020) 103971.

    https://doi.org/10.1016/j.jmps.2020.103971

  11. Crystal plasticity finite element analysis of gradient nanostructured TWIP steel,

    X. Lu, J. Zhao, Z. Wang, B. Gan, J. Zhao, G. Kang, X. Zhang*

    International Journal of Plasticity, 130 (2020) 102703. 

    https://doi.org/10.1016/j.ijplas.2020.102703

  12. Interaction between a {101 -2} twin boundary and grain boundaries in magnesium,

    J. Tang, H. Fan*, W. Jiang, Q. Wang, X. Tian, X. Zhang*

    International Journal of Plasticity, 126 (2020) 102613. 

    https://doi.org/10.1016/j.ijplas.2019.10.001

  13. Multiple mechanism based constitutive modeling of gradient nanograined material,

    J. Zhao, X. Lu, Q. Kan, F. Yuan, S. Qu, G. Kang, X. Zhang*

    International Journal of Plasticity125 (2020) 314-330.

    https://doi.org/10.1016/j.ijplas.2019.09.018

  14. Effects of twin boundary orientation on plasticity of bicrystalline copper micropillars: A discrete dislocation dynamics simulation study,

    D. Wei, M. Zaiser, Z. Feng, G Kang, H. Fan*, X. Zhang*

    Acta Materialia. 176 (2019) 289–296.

    https://doi.org/10.1016/j.actamat.2019.07.007

  15. Grain boundary effect on nanoindentation: A multiscale discrete dislocation dynamics model,

    S. Lu, B. Zhang, X. Li, J. Zhao, M. Zaiser, H. Fan*, X. Zhang*

    Journal of the Mechanics and Physics of Solids, 126 (2019) 117-135.

    https://doi.org/10.1016/j.jmps.2019.02.003

  16. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper,

    X. Lu, X. Zhang*, M. Shi, F. Roters, G. Kang, D. Raabe, 

    International Journal of Plasticity, 113 (2019) 52–73.

    https://doi.org/10.1016/j.ijplas.2018.09.007

  17. Critical thickness phenomenon in single-crystalline wires under torsion,

    D. Liu*, X. Zhang, Y. Li, D.J. Dunstan, 

    Acta Materialia, 150 (2018) 213–223.

    https://doi.org/10.1016/j.actamat.2018.03.022

  18. Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: How do they relate to the dislocation microstructure?,

    X. Zhang, K.E. Aifantis, J. Senger, D. Weygand, M. Zaiser*, 

    Journal of Materials Research. 29 (2014) 2116–2128. (Feature Paper)

    https://doi.org/10.1557/jmr.2014.234

(2)代表性中文论文

  1. CoCrFeMnNi高熵合金冲击波响应与层裂强度的分子动力学研究

    杜欣, 袁福平, 熊启林, 张波, 阚前华, 张旭*. 

    力学学报 54(8) (2022) 2152

    https://doi.org/10.6052/0459-1879-22-239

  2. CrMnFeCoNi高熵合金拉伸断裂的晶体塑性有限元模型

    王姝予,宋世杰,陆晓翀,阚前华,康国政,张旭*

    机械工程学报,57 (2021) 1-9

    https://kns.cnki.net/kcms/detail/11.2187.TH.20211129.1236.022.html

  3. 激光冲击选区强化对2024铝合金叶片振动响应特性的影响

    吴郑浩,周留成,张波,阚前华,张旭*

    表面技术,51(1)(2021)348-357

    https://kns.cnki.net/kcms/detail/50.1083.TG.20211116.1639.004.html

  4. 激光冲击下CoCrFeMnNi高熵合金微观塑性变形的分子动力学模拟

    杜欣,熊启林,周留成,阚前华,蒋虽合,张旭*

    力学学报,53(12) (2021) 3331-3340.

    https://doi.org/10.6052/0459-1879-21-468

  5. 颗粒增强复合材料压缩行为的位错动力学模拟.

    丁一凡, 魏德安, 陆宋江, 刘金铃, 康国政, 张旭*

    力学学报 53(6) (2021) 1622-1633.

    https://doi.org/10.6052/0459-1879-21-028

  6. CrMnFeCoNi高熵合金纳米晶温度相关的拉伸行为研究,

    胡远啸, 双思垚, 王冰, 张燮, 张旭*

    固体力学学报 41(2) (2020) 109-117. 

    https://doi.org/10.19636/j.cnki.cjsm42-1250/o3.2020.004

  7. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟,

    熊健, 魏德安, 陆宋江, 阚前华, 康国政,张旭*, 

    金属学报. 55 (2019) 1476–1486.

    https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00025  

二、学位论文

  1. 张旭,应变梯度塑性框架中內禀长度尺度与材料微结构关联研究,西南交通大学,博士后出站报告,2016。(合作导师:康国政)

  2. 张旭,基于应变梯度塑性理论的微纳米尺度材料力学行为研究,华中科技大学,博士论文,2011。(导师:李振环、Katerina Aifantis)