博士生导师
硕士生导师
[1] GAO S, KANG G, YU L, et al. Adaptive Deep Learning for High-Speed Railway Catenary Swivel Clevis Defects Detection [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1299-310.
[2] Wang, Jian, Shibin Gao, Long Yu, Dongkai Zhang, Chugang Ding, Ke Chen, and Lei Kou. Predicting Wind-Caused Floater Intrusion Risk for Overhead Contact Lines Based on Bayesian Neural Network with Spatiotemporal Correlation Analysis.[J]. Reliability Engineering & System Safety, 2022, 225.
[3] YU L, GAO S, ZHANG D, et al. A Survey on Automatic Inspections of Overhead Contact Lines by Computer Vision [J]. IEEE Transactions on Intelligent Transportation Systems, 2021.
[4]Qian Kaiyi,Gao Shibin,Yu Long. Marginal frequent itemset mining for fault prevention of railway overhead contact system.[J]. ISA transactions,2021.
[5]Zhang Dongkai,Gao Shibin,Yu Long,Kang Gaoqiang,Wei Xiaoguang,Zhan Dong. DefGAN: Defect Detection GANs With Latent Space Pitting for High-Speed Railway Insulator[J]. IEEE Transactions on Instrumentation and Measurement,2021,70.
[6]Qian Kaiyi,Yu Long,Gao Shibin. Fault Tree Construction Model Based on Association Analysis for Railway Overhead Contact System[J]. International Journal of Computational Intelligence Systems,2020,14(1).
[7] Zhang D , Gao S , Yu L , et al. A Robust Pantograph–Catenary Interaction Condition Monitoring Method Based on Deep Convolutional Network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(5):1920-1929.
[8]Yigu Liu,Shibin Gao,Long Yu. A Novel Fault Prevention Model for Metro Overhead Contact System.[J]. IEEE Access,2019,7.
[9]Gaoqiang Kang,Shibin Gao,Long Yu,Dongkai Zhang. Deep Architecture for High-Speed Railway Insulator Surface Defect Detection: Denoising Autoencoder With Multitask Learning.[J]. IEEE Trans. Instrumentation and Measurement,2019,68(8).
[10]Shiwang Liu,Long Yu,Dongkai Zhang. An Efficient Method for High-Speed Railway Dropper Fault Detection Based on Depthwise Separable Convolution.[J]. IEEE Access,2019,7.
[11]Kang Gaoqiang,Gao Shibin,Yu Long,Zhang Dongkai,Wei Xiaoguang,Zhan Dong. Contact Wire Support Defect Detection Using Deep Bayesian Segmentation Neural Networks and Prior Geometric Knowledge[J]. IEEE Access,2019,7.
[12]Zhan Dong,Jing Deyan,Wu Mingli,Zhang Dongkai,Yu Long,Chen Tanglong. An Accurate and Efficient Vision Measurement Approach for Railway Catenary Geometry Parameters[J]. IEEE Transactions on Instrumentation and Measurement,2018,67(12).
[13]Dong Zhan,Long Yu,Jian Xiao,Tanglong Chen. Multi-Camera and Structured-Light Vision System (MSVS) for Dynamic High-Accuracy 3D Measurements of Railway Tunnels[J]. Sensors,2015,15(4).
[14]刘益成,于龙,高仕斌,庞鸿宇.基于注意力机制的铁路巡检视频场景分类方法研究[J].铁道学报,2021,43(07):95-101.
[15]康高强,高仕斌,于龙,陈健雄.基于深度学习的高铁接触网旋转双耳开口销钉缺失故障检测[J].铁道学报,2020,42(10):45-51.
[16]高雄杰,于龙,陈唐龙.基于中点弦测法的中低速磁浮轨道不平顺检测[J].铁道学报,2020,42(08):116-122.
[17]张冬凯,高仕斌,于龙,占栋,康高强.车体振动对接触网检测的影响分析及补偿方法研究[J].铁道学报,2019,41(09):43-50.
[18]冯凯,于龙,占栋,张冬凯.钢轨轮廓全断面检测中的快速高鲁棒性匹配方法研究[J].铁道学报,2019,41(05):162-167.
[19]占栋,景德炎,吴命利,于龙,刘兰.钢轨轮廓测量基准对齐和重采样方法研究[J].仪器仪表学报,2018,39(02):149-159.DOI:10.19650/j.cnki.cjsi.j1702547.
[20]占栋,于龙,肖建,陈唐龙,张冬凯.钢轨轮廓测量中多视觉传感器全局标定方法研究[J].铁道学报,2016,38(08):87-95.
[21]占栋,于龙,肖建,陈唐龙.钢轨轮廓全断面高精度动态视觉测量方法研究[J].铁道学报,2015,37(09):96-106.
[22]占栋,于龙,肖建,陈唐龙.隧道净空全断面测量中多视觉传感器全局标定方法[J].铁道学报,2015,37(07):98-106.
[23]占栋,于龙,肖建,卢明舫.钢轨轮廓全断面检测中轨廓动态匹配方法研究[J].铁道学报,2015,37(05):71-77.
[24]占栋,于龙,肖建,陈唐龙.多摄像机结构光大视场测量中全局标定方法研究[J].仪器仪表学报,2015,36(04):903-912.DOI:10.19650/j.cnki.cjsi.2015.04.023.
[25]刘宝轩,陈唐龙,于龙,蒲文旭.地铁弓网燃弧能量检测与牵引电流扰动分析[J].铁道学报,2015,37(03):8-13.
[26]张智涛,景小兵,陈唐龙,于龙.高湿度环境下接触网腕臂复合绝缘子泄漏电流频谱分析[J].铁道学报,2015,37(03):35-41.
[27]蒲文旭,于龙,陈唐龙,刘宝轩.基于熵测度的地铁弓网燃弧电流扰动分析[J].高电压技术,2014,40(11):3642-3648.DOI:10.13336/j.1003-6520.hve.2014.11.047.
[28]张勋,李乾,于龙,陈唐龙.基于双端数据的直流牵引网故障测距算法[J].铁道学报,2014,36(10):33-39.
[29]占栋,于龙,肖建,陈唐龙,佘睿.接触网几何参数高速动态视觉测量方法研究[J].仪器仪表学报,2014,35(08):1852-1859.DOI:10.19650/j.cnki.cjsi.2014.08.024.
[30]占栋,于龙,肖建,陈唐龙.基于激光摄像技术的钢轨磨耗截面积测量方法研究[J].铁道学报,2014,36(04):32-37.
[31]占栋,于龙,邱存勇,肖建,陈唐龙.钢轨轮廓测量中的车体振动补偿问题研究[J].仪器仪表学报,2013,34(07):186-194.DOI:10.19650/j.cnki.cjsi.2013.07.027.
[32]占栋,于龙,肖建,陈唐龙.轨道检测中激光摄像式传感器标定方法研究[J].机械工程学报,2013,49(16):39-47.
[33]占栋,于龙,肖建,陈唐龙,陈忠革,郑锐.基于计算机视觉的接触轨检测车振动补偿方法及应用[J].铁道学报,2013,35(01):25-30.
欢迎你报考于龙老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择于龙老师,你的所有申请信息将发送给于龙老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请于龙老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为于龙老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考于龙老师招收的专业和方向,进入复试后提交导师意向时选择于龙老师。
4、如果你有兴趣攻读于龙老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。