张旭

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度与微纳米力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料

报考该导师研究生的方式

欢迎你报考张旭老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。

4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

2019

当前位置: 多尺度材料力学 >> 团队新闻 >> 2019

2019-05-24 课题组合作发表的论文“Revealing the inhibition mechanism of grain size gradient on crack growth in gradient nano-grained materials”在期刊 International Journal of Solids and Structures 上在线发表

Abstract

Gradient nano-grained (GNG) materials, in which grain size changes from nano-scale in the surface to micro-scale in the core, have shown superior fatigue property, good strength and ductility. However, crack growth behaviors of GNG materials are studied hardly. In this work, the effect of grain size gradient on crack growth is investigated to reveal the inhibition mechanism of crack growth in GNG materials. The developed model employs a distributed dislocation method to model the evolution of plastic zone. The influence of grain size gradient on the distribution of dislocations in grains and the local stress intensity factor is analyzed. The results show that the sizes of dislocation zone and dislocation-free zone in grains become larger as the gradient of grain size increases. The number of dislocations emitted from the crack tip increases with the grain size gradient increasing, so the shielding effect of emitted dislocations on the crack growth increases and crack blunting becomes more serious. This means that a sharper grain size gradient inhibits the crack growth more effectively. The results in this paper are important for understanding the fracture behaviors of materials with grain size gradient and are helpful for material design and structural optimization.


Link

https://doi.org/10.1016/j.ijsolstr.2019.05.023