张旭

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度与微纳米力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料

报考该导师研究生的方式

欢迎你报考张旭老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。

4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

2019

当前位置: 多尺度材料力学 >> 团队新闻 >> 2019

2019-10-04 赵建锋(博士生)的论文“Multiple mechanism based constitutive modeling of gradient nanograined material”在期刊 International Journal of Plasticity 上在线发表。

Highlights

•A multiple-mechanism-based model is developed to describe the mechanical behavior of GNG materials.


•The effects of different mechanisms on the tensile response of GNG are quantitatively evaluated.


•The effects of the constraint of the CG core on the GNG layer and back stress improve the ductility of the GNG sample.


Abstract

Gradient nano-grained (GNG) materials, inside which grain size increases gradually from nano-scale in the surface to micro-scale in the substrate, have shown synergetic strength and ductility. The extra strain hardening of GNG materials is considered to result from both geometrically necessary dislocations (GNDs) accommodating nonuniform plastic deformation and superior kinematic hardening characterized by back stress. However, few quantitative investigations were performed to evaluate the contribution of various strengthening mechanisms to the mechanical response of GNG materials. In this work, we develop a multiple-mechanism-based constitutive model, in which constitutive laws for GNDs and back stress at both grain level and sample level are established. Microstructure-based finite element simulation successfully predicts the uniaxial tensile behavior of a GNG interstitial-free (IF) steel sheet. The simulation results demonstrate that GNDs and back stress at sample level have little influence on the strengthening of the GNG IF-steel, while the back stress induced by pileup GNDs contributes about 35% to the flow stress. The uniform elongation of the GNG sample is improved by the constraint of coarse-grained core on GNG layer. This work helps to understand the contributions of deformation mechanisms to the synergetic strength and ductility of GNG materials and to guide the microstructure design and optimization for improved strength-ductility combination.


Link

https://doi.org/10.1016/j.ijplas.2019.09.018