
个人信息Personal Information
性别:男
学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学
多尺度力学,宏微观力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料,材料的增强与增韧
2019-10-04 赵建锋(博士生)的论文“Multiple mechanism based constitutive modeling of gradient nanograined material”在期刊 International Journal of Plasticity 上在线发表。
发布时间:2019-10-04
Highlights
•A multiple-mechanism-based model is developed to describe the mechanical behavior of GNG materials.
•The effects of different mechanisms on the tensile response of GNG are quantitatively evaluated.
•The effects of the constraint of the CG core on the GNG layer and back stress improve the ductility of the GNG sample.
Abstract
Gradient nano-grained (GNG) materials, inside which grain size increases gradually from nano-scale in the surface to micro-scale in the substrate, have shown synergetic strength and ductility. The extra strain hardening of GNG materials is considered to result from both geometrically necessary dislocations (GNDs) accommodating nonuniform plastic deformation and superior kinematic hardening characterized by back stress. However, few quantitative investigations were performed to evaluate the contribution of various strengthening mechanisms to the mechanical response of GNG materials. In this work, we develop a multiple-mechanism-based constitutive model, in which constitutive laws for GNDs and back stress at both grain level and sample level are established. Microstructure-based finite element simulation successfully predicts the uniaxial tensile behavior of a GNG interstitial-free (IF) steel sheet. The simulation results demonstrate that GNDs and back stress at sample level have little influence on the strengthening of the GNG IF-steel, while the back stress induced by pileup GNDs contributes about 35% to the flow stress. The uniform elongation of the GNG sample is improved by the constraint of coarse-grained core on GNG layer. This work helps to understand the contributions of deformation mechanisms to the synergetic strength and ductility of GNG materials and to guide the microstructure design and optimization for improved strength-ductility combination.
Link
https://doi.org/10.1016/j.ijplas.2019.09.018