张旭

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度与微纳米力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料

报考该导师研究生的方式

欢迎你报考张旭老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。

4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

2019

当前位置: 多尺度材料力学 >> 团队新闻 >> 2019

2019-11-15 合作发表的论文“Strain gradient differential quadrature Kirchhoff plate finite element with the C2 partial compatibility”在期刊 European Journal of Mechanics / A Solids 上在线发表。

Highlights

•A four-node strain gradient Kirchhoff plate element without using shape functions is proposed.


•A DQ-based geometric mapping scheme to realize the C2 partial compatibility is established.


•This element incorporates the gradient effects of dilatation, deviatoric stretch and rotation.


•The size-dependence of vibration and buckling mode shapes is demonstrated.


Abstract

This paper constructs a four-node Kirchhoff plate element considering dilatation, deviatoric stretch and rotation gradient effects to address the general boundary value problems of size-dependent isotropic thin micro-plates. This element benefits from the merits of differential quadrature method (DQM) and finite element method (FEM) and possesses four nodal displacement parameters at each node, i.e., deflection, its two first partial derivatives and one second mixed partial derivative with respect to two in-plane coordinates. To guarantee the C2 partial compatibility among neighboring elements, we establish a novel DQ-based geometric mapping scheme relating the deflection values at Gauss-Lobatto quadrature points to the displacement parameters at four nodes. By applying the DQ rule, the Gauss-Lobatto quadrature rule and the developed mapping scheme, the total potential energy of a generic gradient-elastic Kirchhoff plate element is represented as a function of nodal displacement parameters. The element formulation is derived using the minimum total potential energy principle. Several numerical examples are provided to demonstrate the validity of the proposed method and explore the static bending, free vibration and critical buckling behavior of thin micro-plates. It is validated that the size-dependence of vibration and critical buckling mode shapes of thin micro-plates can be observed in some cases.


Link

https://doi.org/10.1016/j.euromechsol.2019.103879