个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
性别:男
学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学
多尺度力学,宏微观力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料,材料的增强与增韧
报考该导师研究生的方式
欢迎你报考张旭老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。
4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
2019-11-28 合作发表的论文“Size-dependent static and dynamic analysis of Reddy-type micro-beams by strain gradient differential quadrature finite element method”在 Thin-Walled Structures 上在线发表。
Highlights
1.A two-node strain gradient Reddy beam element is proposed by drawing the advantages of conventional FEM and DQM.
2.A novel DQ-based geometric mapping scheme is constructed to address the higher-order continuity requirements of the kinematic quantities.
3.The developed element has better convergence and adaptability than the classical shape function-based one.
4.The size-dependence of vibration and buckling mode shapes of uniform and multiple-stepped micro-beams are revealed.
Abstract
This paper proposes a strain gradient differential quadrature finite element method to analyze the size-dependent static and dynamic behaviour of Reddy-type micro-beams. This element has 6 of freedom per node and avoids the exploitation of shape functions. A sixth-order differential quadrature-based geometric mapping scheme is constructed to realize the higher-order continuity requirements of kinematic variables. And then, it is combined with the minimum total potential energy principle to derive the motion equation of a generic element. Afterwards, several numerical examples are provided to establish the validity of the developed element. Finally, we utilize this method to analyze the static bending, free vibration, and linear buckling characteristics of uniform and stepped micro-beams. Numerical results show that the current element has prominent convergence and adaptability advantages over the classical shape function-based element. Besides, the size-dependence of vibration and critical buckling mode shapes of micro-beams is demonstrated in the graphical form for the first time.
Link
https://doi.org/10.1016/j.tws.2019.106496