个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
性别:男
学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学
多尺度与微纳米力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料
报考该导师研究生的方式
欢迎你报考张旭老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。
4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
2020-06-02 多尺度材料力学研究组与张波博士合作发表的论文 “Coupling effects of surface energy, strain gradient, and inertia gradient on the vibration behavior of small-scale beams”在期刊 International Journal of Mechanical Sciences 上在线发表。
Highlights
•Surface energy-enriched gradient elastic EB, TB, and LBRB models were developed.
•Euler-Lagrange variational formulations for general gradient elastic beams were derived.
•Differential quadrature finite elements were established to solve the general free vibration problems of small-scale beams.
•Three types of size effects can significantly change the vibration frequencies and mode shapes of small-scale beams.
•The introduction of the strain gradient effect may induce a boundary layer for small-scale beams with at least one end clamped.
Abstract
This paper develops three surface energy-enriched gradient elastic beam models, respectively, in the contexts of Euler-Bernoulli, Timoshenko, and Levinson-Brickford-Reddy kinematic hypotheses to investigate the coupling effects of surface energy, strain gradient, and inertia gradient on the vibration behavior of small-scale beams. Modified strain-inertia gradient elasticity theory and Gurtin-Murdoch surface elasticity theory are combined to capture three types of small-scale effects. The equations of motion and consistent boundary conditions are derived by using the Euler-Lagrange variational principle. To analyze the general free vibration problems of three non-classical beam models, we construct the related differential quadrature finite elements according to two kinds of differential quadrature-based geometric mapping schemes. The efficacy of our theoretical models and numerical solution methods is established by comparing the degenerated results with the reported ones. Finally, we apply the newly developed models to investigate the size-dependent behavior of freely vibrating small-scale beams. It is revealed that the coupling effects of three physical factors can result in not only the stiffening or softening characteristic of vibration frequencies but also the significant change in the vibration mode shapes. Besides, the introduction of the strain gradient effect may induce a boundary layer for small-scale beams with at least one end clamped.
Link
https://doi.org/10.1016/j.ijmecsci.2020.105834