张旭

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度与微纳米力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料

报考该导师研究生的方式

欢迎你报考张旭老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。

4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

2020

当前位置: 多尺度材料力学 >> 团队新闻 >> 2020

2020-10-27 多尺度材料力学研究组论文Dislocation–grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations在期刊 Acta Materialia上在线发表

Highlights

•A 3D dislocation dynamics framework for various grain boundary (GB) types by using a ‘coarse-graining’ method was established.


•The dislocation–GB interaction model considers both dislocation absorption and dislocation emission at GBs.


•The compression behavior of several bicrystalline nanopillars with large-angle GB was investigated.


Abstract

Grain boundaries (GBs) have a significant influence on the mechanical properties of metallic materials. It has been a great challenge to describe dislocation interactions with various GBs. In the present article, a generalized dislocation–GB interaction model was constructed and then implemented in the three-dimensional multiscale discrete dislocation dynamics (DDD) framework. In the model, two dislocation–GB interaction mechanisms, i.e., dislocation absorption at GBs and dislocation emission from GBs, were considered. In order to make the dislocation–GB interaction model suitable for various GB types, a ‘coarse-graining’ approach was applied to deal with the process of dislocation absorption and emission. As the validations and applications of the proposed dislocation–GB interaction model, nanopillars containing a non-sigma large-angle GB and subjected to uniaxial compression were studied. The simulated results show that the bi-crystalline nanopillars possess a higher yield strength and flow stress, smaller stress-drop size than single-crystalline counterparts, which is consistent with earlier experimental observations in the literature. Afterward, the DDD simulation was employed to reveal the effect of GB misorientation on the mechanical responses of bicrystals with a large-angle-symmetric-tilt GB. Simulations indicate that the mechanical responses of bicrystals are affected by the GB structures and complex dislocation–dislocation and dislocation–GB interactions. In contrast, the dislocation absorption and emission events, as well as the evolution of resolved shear stress and dislocation density, do not depend on the GB misorientation angles or the GB strength (or the GB energy).


Link

https://doi.org/10.1016/j.actamat.2020.10.052