个人信息Personal Information


性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度力学,宏微观力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料,材料的增强与增韧

2020

当前位置: 多尺度材料力学 >> 团队新闻 >> 2020

2020-10-27 多尺度材料力学研究组论文Dislocation–grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations在期刊 Acta Materialia上在线发表

发布时间:2020-10-27  

Highlights

•A 3D dislocation dynamics framework for various grain boundary (GB) types by using a ‘coarse-graining’ method was established.


•The dislocation–GB interaction model considers both dislocation absorption and dislocation emission at GBs.


•The compression behavior of several bicrystalline nanopillars with large-angle GB was investigated.


Abstract

Grain boundaries (GBs) have a significant influence on the mechanical properties of metallic materials. It has been a great challenge to describe dislocation interactions with various GBs. In the present article, a generalized dislocation–GB interaction model was constructed and then implemented in the three-dimensional multiscale discrete dislocation dynamics (DDD) framework. In the model, two dislocation–GB interaction mechanisms, i.e., dislocation absorption at GBs and dislocation emission from GBs, were considered. In order to make the dislocation–GB interaction model suitable for various GB types, a ‘coarse-graining’ approach was applied to deal with the process of dislocation absorption and emission. As the validations and applications of the proposed dislocation–GB interaction model, nanopillars containing a non-sigma large-angle GB and subjected to uniaxial compression were studied. The simulated results show that the bi-crystalline nanopillars possess a higher yield strength and flow stress, smaller stress-drop size than single-crystalline counterparts, which is consistent with earlier experimental observations in the literature. Afterward, the DDD simulation was employed to reveal the effect of GB misorientation on the mechanical responses of bicrystals with a large-angle-symmetric-tilt GB. Simulations indicate that the mechanical responses of bicrystals are affected by the GB structures and complex dislocation–dislocation and dislocation–GB interactions. In contrast, the dislocation absorption and emission events, as well as the evolution of resolved shear stress and dislocation density, do not depend on the GB misorientation angles or the GB strength (or the GB energy).


Link

https://doi.org/10.1016/j.actamat.2020.10.052