个人信息Personal Information


性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度力学,宏微观力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料,材料的增强与增韧

2020

当前位置: 多尺度材料力学 >> 团队新闻 >> 2020

2020-12-19 合作论文“Variational formulation and differential quadrature finite element for freely vibrating strain gradient Kirchhoff plates”在ZAMMA期刊在线发表

发布时间:2020-12-19  

摘要

This paper constructs a four-node Kirchhoff plate element considering dilatation, deviatoric stretch and rotation gradient effects to address the general boundary value problems of size-dependent isotropic thin micro-plates. This element benefits from the merits of differential quadrature method (DQM) and finite element method (FEM) and possesses four nodal displacement parameters at each node, i.e., deflection, its two first partial derivatives and one second mixed partial derivative with respect to two in-plane coordinates. To guarantee the C-2 partial compatibility among neighboring elements, we establish a novel DQ-based geometric mapping scheme relating the deflection values at Gauss-Lobatto quadrature points to the displacement parameters at four nodes. By applying the DQ rule, the Gauss-Lobatto quadrature rule and the developed mapping scheme, the total potential energy of a generic gradient-elastic Kirchhoff plate element is represented as a function of nodal displacement parameters. The element formulation is derived using the minimum total potential energy principle. Several numerical examples are provided to demonstrate the validity of the proposed method and explore the static bending, free vibration and critical buckling behavior of thin micro-plates. It is validated that the size-dependence of vibration and critical buckling mode shapes of thin micro-plates can be observed in some cases.


Link

http://dx.doi.org/10.1002/zamm.202000046