个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
性别:男
学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学
多尺度力学,宏微观力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料,材料的增强与增韧
报考该导师研究生的方式
欢迎你报考张旭老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。
4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
2021-05-13 博士毕业生赵建锋的论文“The tension-compression behavior of gradient structured materials: a deformation-mechanism-based strain gradient plasticity model ”在Mechanics of Materials在线发表
Highlights
•A deformation-mechanism-based model considering the internal plasticity heterogeneities is established for GS materials.
•The established model unified the grain scale GNDs, the resulting back stress, and reversible dislocations into a constitutive framework.
•GS material exhibits enhanced kinematic hardening which results mainly from fine grains in the gradient layer.
Abstract
Gradient structured (GS) metals can simultaneously achieve high strength and high ductility, which is the pursuit of structural materials. Abundant studies have pointed out that significant kinematic hardening is key to their strength-ductility combination. Unfortunately, few constitutive models were established to simulate and analyze the characteristic kinematic hardening behavior of GS metals. Thus, a systematic and deep understanding of the relationship between graded microstructure and the resulting macroscopic response needs further effort. In this work, we develop a strain gradient plasticity model that considers plasticity heterogeneities from the grain to the sample scale. A back stress model, which accounts for the dependency of dislocation pileups on grain size, is established to describe the cyclic deformation properties of GS materials. The established model unifies the concepts of geometrically necessary dislocations accommodating plasticity heterogeneities, grain size-dependent back stress, and reversible dislocation motion during reverse loading into a strain gradient plasticity framework. A finite element implementation of the model quantitatively predicts the uniaxial tensile and tensile-compressive responses of a GS copper bar as well as of homogeneously grained reference samples. The simulation indicates that the enhanced kinematic hardening of GS copper results mainly from fine grains in the GS layer and contributes to the considerable ductility of the GS material. The strain gradient cyclic plasticity model enables future investigation of the cyclic/fatigue behavior of GS materials, which is vital for the engineering application.
Link
http://lxxb.cstam.org.cn/CN/10.6052/0459-1879-21-028