个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
性别:男
学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学
多尺度与微纳米力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料
报考该导师研究生的方式
欢迎你报考张旭老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。
4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
2022-10-30 合作论文“Machine learning-based prediction of fracture toughness and path in the presence of micro-defects”在Engineering Fracture Mechanics发表
Highlights
•The machine-learning solutions of fracture toughness and path in the presence of micro-defects are presented.
•The data set of fracture behaviors affected by defects is obtained by the phase field fracture and distributed dislocation methods.
•Fracture toughness and path can be well predicted by neural-network models, and the square of correlation coefficient is more than 0.99.
Abstract
The effect of micro-defects on the fracture toughness and path is predicted by a machine learning method. The data set of fracture toughness is obtained based on the distributed-dislocation-technique solution, and the data set of fracture path is built based on the phase field fracture simulations. The neural network models are applied to approximate the nonlinear relationship between the micro-defect parameters (inputs) and the fracture parameters (outputs). The results show that the trained neural network models have a strong fitting ability, and the square of correlation coefficient is more than 0.99. Based on the trained models, the micro-crack toughening zones and the fracture path in the presence of a micro-void can be easily obtained, which is useful for toughening design and predicting fracture behaviors of brittle materials.
Link
https://doi.org/10.1016/j.engfracmech.2022.108900
上一条:2022-11-22 博士生双思垚论文“Effect of loading orientation on plasticity in nano-laminated CoNiCrFeMn dual-phase high-entropy alloy: A molecular dynamics study”在Modelling and Simulation in Materials Science and Engineering 在线发表
下一条:2022-10-29 合作论文“Incremental strain gradient plasticity model and torsion simulation of copper micro-wires”在International Journal of Mechanical Sciences发表