个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
性别:男
学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学
多尺度与微纳米力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料
报考该导师研究生的方式
欢迎你报考张旭老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。
4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
2022-12-09 合作论文“Accurate mechanical buckling analysis of couple stress-based skew thick microplates”在Aerospace Science and Technology在线发表
Abstract
We investigate, for the first time, the elastic buckling of skew thick microplates under combined in-plane shear and compressive loading within the framework of modified couple stress theory. The displacement field of the microplates is described by a two-variable refined shear deformation theory, wherein the transverse deflection is partitioned into bending and shear components, resulting in a simple and universal elastic buckling model. The Euler-Lagrange equation is used to obtain the equations governing the motion of the skew thick microplates. Obtaining an analytical buckling solution for general boundary supported skew microplates is challenging; therefore, a -type four-node 32-DOF differential quadrature finite element is developed. The element stiffness and geometric stiffness matrices are derived according to the minimum potential energy principle. Significant parametric studies are conducted with different geometrical dimensions, boundary edges, in-plane loadings, and material length scale parameters. The buckling characteristics of skew microplates are investigated using a combination of unequal biaxial compression loads and in-plane compression and shear loads. Numerical results imply that the buckling modes are influenced by the combination of size effects and skew angle and not by the buckling loads alone.
Keywords
Elastic buckling; Skew thick microplates; Modified couple stress theory; Two-variable refined shear deformation theory; Differential quadrature finite element
Link
https://doi.org/10.1016/j.ast.2022.108056