张旭

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度力学,宏微观力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料,材料的增强与增韧

报考该导师研究生的方式

欢迎你报考张旭老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。

4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

2023

当前位置: 多尺度材料力学 >> 团队新闻 >> 2023

2023-02-16 博士毕业生赵建锋论文“Dispersed strain bands promote the ductility of gradient nano-grained material: A strain gradient constitutive modeling considering damage effect ”在Mechanics of Materials发表

Highlights

  • A dislocation density-based strain gradient plasticity model coupling with a damage model is developed for GNG material.

  • The established model quantitatively predicts the tensile response of GNG nickel with various grain size gradients.

  • Stabilization of dispersed strain bands on the nano-grained surface significantly improves the GNG material's ductility.

Abstract

Gradient nano-grained (GNG) metals have achieved superior strength-ductility synergy than their homogeneous counterparts. The high strength is usually attributed to the grain size effect and hetero-deformation-induced strengthening. However, incommensurate work on ductility leads to an incomplete understanding of the strength-ductility combination. In this work, a dislocation density-based strain gradient plasticity model coupling with a damage model is developed to describe the strain hardening and softening behavior of GNG material. A grain size-dependent back stress model derived from the generation of dislocation pileups is invoked to describe the widely-concerned back stress hardening. Finite element implementation of the model quantitatively predicts the tensile response of GNG nickel with various degrees of grain size gradient. The results reveal that dispersed strain bands propagate stably in the nano-grained surface layer of GNG material, which is totally different from those occurring in a freestanding nano-grained material. The stabilization of dispersed strain bands enables the nano-grained layer to deform uniformly, thus premature failure of the whole GNG material is suppressed and improved ductility is achieved. Furthermore, increasing the grain size gradient renders the strain bands more stable, leading to enhanced ductility. The method developed in this work is helpful for understanding the strength-ductility synergy of GNG materials and for optimizing the microstructure gradient in GNG materials.

Link

https://doi.org/10.1016/j.mechmat.2023.104599