张旭

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

性别:

学科:力学. 航空宇航科学与技术. 材料科学与工程. 机械工程. 冶金工程. 先进制造. 航空工程. 材料工程. 冶金工程. 机械工程. 固体力学

多尺度力学,宏微观力学,梯度结构材料,界面力学,固体本构关系,应变梯度理论,晶体塑性有限元,离散位错动力学,分子动力学,高熵合金,大数据与机器学习,材料基因,极端力学,高性能材料,材料的增强与增韧

报考该导师研究生的方式

欢迎你报考张旭老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张旭老师,你的所有申请信息将发送给张旭老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张旭老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张旭老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张旭老师招收的专业和方向,进入复试后提交导师意向时选择张旭老师。

4、如果你有兴趣攻读张旭老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

科研进展

当前位置: 多尺度材料力学 >> 科学研究 >> 科研进展

2023-03-12 论文“Enhanced strength-ductility synergy of medium-entropy alloys via multiple level gradient structures”在International Journal of Plasticity发表

Highlights

  • Multiple level gradient structured MEAs enhance strength-ductility synergy.

  • The crystal plasticity simulation, mechanical testing and microstructure characterization are employed to clarify the mechanical behavior and deformation mechanisms.

  • High order microbands and mechanical twins provide progressively strain hardening.

  • Design criterion for strength-ductility synergy via torsion-based treatments is proposed.


Abstract

The microstructures, mechanical properties, and deformation substructures of gradient Mo0.3NiCoCr medium-entropy alloys (MEAs) with very coarse grain size created by pre-torsion have been investigated. The strength of MEAs increases with the increase of torsion angle, while the tensile elongation nearly remains the same, suggesting the enhanced strength-ductility synergy. The initial dislocation density gradient structure after torsion and the following deformation substructure under tension are uncovered by means of electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI), and transmission electron microscopy (TEM). The crystal plasticity finite element method (CPFEM) is employed to quantitively evaluate the evolution of dislocation densities and mechanical twinning volume fraction. The combination of experimental characterization and theoretical modeling enables to clarify the underlying strengthening and strain hardening mechanisms. The gradient distribution of dislocation created by the torsion leads to the rise of yield strength. Moreover, the high order of microbands, which arise from the activation of multiple slip systems during torsion, and additional mechanical twinning form in the gradient MEAs upon loading, constituting multiple level gradient structures. As the plastic strain goes on, the microbands can propagate and refine continuously, along with the interactions with the nano twins, in these MEAs with very coarse grain size up to ∼500 µm, which produce progressively high strain hardening and stabilize the plastic deformation over the whole deformation regime. This study thus offers guidance for optimizing the mechanical performance of structural materials via tuning the design of gradient structure.


Link

https://doi.org/10.1016/j.ijplas.2023.103592