王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Long sequence time-series forecasting with deep learning: A survey

影响因子:17.4

DOI码:10.1016/j.inffus.2023.101819

所属单位:西南交通大学

发表刊物:Information Fusion

刊物所在地:NETHERLANDS

关键字:Time series forecasting; Long time series forecasting; Transformer; Data mining; Deep learning

摘要:The development of deep learning technology has brought great improvements to the field of time series forecasting. Short sequence time-series forecasting no longer satisfies the current research community, and long-term future prediction is becoming the hotspot, which is noted as long sequence time-series forecasting (LSTF). The LSTF has been widely studied in the extant literature, but few reviews of its research development are reported. In this article, we provide a comprehensive survey of LSTF studies with deep learning technology. We propose rigorous definitions of LSTF and summarize the evolution in terms of a proposed taxonomy based on network structure. Next, we discuss three key problems and corresponding solutions from long dependency modeling, computation cost, and evaluation metrics. In particular, we propose a Kruskal–Wallis test based evaluation method for evaluation metrics problems. We further synthesize the applications, datasets, and open-source codes of LSTF. Moreover, we conduct extensive case studies comparing the proposed Kruskal–Wallis test based evaluation method with existing metrics and the results demonstrate the effectiveness. Finally, we propose potential research directions in this rapidly growing field. All resources and codes are assembled and organized under a unified framework that is available online at https://github.com/Masterleia/TSF_LSTF_Compare.

合写作者:Minbo Ma,Tianrui Li,Hongjun Wang

第一作者:Zonglei Chen

论文类型:SCI

通讯作者:Chongshou Li

学科门类:工学

文献类型:J

卷号:97

页面范围:101819

ISSN号:1566-2535

是否译文:

发表时间:2023-04-21

收录刊物:SCI