王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Auto-attention Mechanism for Multi-view Deep Embedding Clustering

影响因子:8.4

DOI码:10.1016/j.patcog.2023.109764

所属单位:西南交通大学

发表刊物:Pattern Recognition

刊物所在地:ENGLAND

关键字:Deep embedding clustering; Deep multi-view clustering; Multi-view autoencoder; Auto-attention

摘要:In several fields, deep learning has achieved tremendous success. Multi-view learning is a workable method for handling data from several sources. For clustering multi-view data, deep learning and multi-view learning are excellent options. However, a persistent challenge is a need for the current deep learning approach to independently drive divergent neural networks for different perspectives while working with multi-view data. The current methods use the number of viewpoints to calculate neural network statistics. Consequently, as the number of views rises, it results in a considerable calculation. Furthermore, they vainly try to unite various viewpoints at the training. Incorporating a triple fusion technique, this research suggests an innovative multi-view deep embedding clustering (MDEC) model. The suggested model can jointly acquire the specific knowledge in each view as well as the information fragment of the collective views. The main goal of the MDEC is to lower the errors made when learning the features of each view and correlating data from many views. To address the optimization problem, the MDEC model advises a suitable iterative updating approach. In testing modern deep learning and non-deep learning algorithms, the experimental study on small and large-scale multi-view data shows encouraging results for the MDEC model. In multi-view clustering, this work demonstrates the benefit of the deep learning-based approach over the non-ones. However, future work will address a variety of issues related to MDEC including the speed.

合写作者:Tianrui Li,Ghufran Ahmad Khan,Xinyan Liang,Hongjun Wang

第一作者:Bassoma Diallo

论文类型:SCI

通讯作者:Jie Hu

学科门类:工学

文献类型:J

卷号:143

页面范围:109764

ISSN号:0031-3203

是否译文:

发表时间:2023-06-17

收录刊物:SCI