王红军 研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Multi-view clustering guided by unconstrained non-negative matrix factorization

影响因子:8.6

DOI码:10.1016/j.knosys.2023.110425

所属单位:西南交通大学

发表刊物:Knowledge-Based Systems

刊物所在地:NETHERLANDS

关键字:Non-negative matrix factorization; Multi-view clustering; Unconstrained; Element updates

摘要:Multi-view clustering based on non-negative matrix factorization (NMFMvC) is a well-known method for handling high-dimensional multi-view data. To satisfy the non-negativity constraint of the matrix, NMFMvC is usually solved using the Karush–Kuhn–Tucker (KKT) conditions. However, this optimization method is poorly scalable. To this end, we propose an unconstrained non-negative matrix factorization multi-view clustering (uNMFMvC) model. First, the objective function was constructed by decoupling the elements of the matrix and combining the elements with a non-linear mapping function in a non-negative value domain. The objective function was then optimized using the stochastic gradient descent (SGD) algorithm. Subsequently, three uNMFMvC methods were constructed based on different mapping functions and detailed reasoning was provided. Finally, experiments were conducted on eight public datasets and compared with cutting-edge multi-view clustering methods. The experimental results demonstrate that the proposed model has significant advantages.

合写作者:Tianrui Li,Hong Peng,Shi-Jinn Horng

第一作者:Ping Deng

论文类型:SCI

通讯作者:Dexian Wang,Hongjun Wang

学科门类:工学

文献类型:J

卷号:266

页面范围:110425

ISSN号:0950-7051

是否译文:

发表时间:2023-03-03

收录刊物:SCI