王红军 研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Gaussian mixture model with local consistency: a hierarchical minimum message length-based approach

影响因子:4.5

DOI码:10.1007/s13042-023-01910-w

所属单位:西南交通大学

发表刊物:International Journal of Machine Learning and Cybernetics

刊物所在地:GERMANY

关键字:Gaussian mixture models; Minimum message length criterion; Hierarchical structure; Covariance matrix; Graph Laplacian

摘要:Gaussian mixture model (GMM) is widely used in many domains, e.g. data mining. The unsupervised learning of the finite mixture (ULFM) model based on the minimum message length (MML) criterion for mixtures enables adaptive model selection and parameter estimates. However, some datasets have a hierarchical structure. If the MML criterion does not consider the hierarchical structure of the a priori, the a priori coding length in the criterion is inaccurate. It is difficult to achieve a good trade-off between the model’s complexity and its goodness of fitting. Therefore, a locally consistent GMM with the hierarchical MML criterion (GM-HMML) algorithm is proposed. Firstly, the MML criterion determines the mixing probability (annihilation of components). To accurately control the competition between these relative necessary components, a hierarchical MML is proposed. Secondly, the hierarchical MML criterion is regularized using the graph Laplacian. The manifold structure is incorporated into the parameter estimator to avoid possible overfitting problems caused by the fine-grained prior. The presented MML criterion enhances the degree of component annihilation, which not only does not annihilate the necessary components but also reduces the iterations. The proposed approach is testified on the real datasets and achieves good model order and clustering accuracy.

合写作者:Zeng Yu,Hongjun Wang,Jihong Wan,Tianrui Li

第一作者:Min Li

论文类型:SCI

通讯作者:Guoyin Wang

学科门类:工学

文献类型:J

页面范围:1-20

ISSN号:1868-8071

是否译文:

发表时间:2023-08-03

收录刊物:SCI