王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Tri-Regularized Nonnegative Matrix Tri-Factorization for Co-clustering

影响因子:8.139

DOI码:10.1016/j.knosys.2021.107101

所属单位:西南交通大学

发表刊物:Knowledge-Based Systems

刊物所在地:NETHERLANDS

项目来源:the National Key R&D Program of China (No. 2017YFB1401401)

关键字:Nonnegative matrix tri-factorizationGraph regularizationEntrywise normSparsityCo-clustering

摘要:The objective of co-clustering is to simultaneously identify blocks of similarity between the sample set and feature set. Co-clustering has become a widely used technique in data mining, machine learning, and other research areas. The nonnegative matrix tri-factorization (NMTF) algorithm, which aims to decompose an objective matrix into three low-dimensional matrices, is an important tool to achieve co-clustering. However, noise is usually introduced during objective matrix factorization, and the method of square loss is very sensitive to noise, which significantly reduces the performance of the model. To solve this issue, this paper proposes a tri-regularized NMTF (TRNMTF) model for co-clustering, which combines graph regularization, Frobenius norm, and norm to simultaneously optimize the objective function. TRNMTF can execute feature selection well, enhance the sparseness of the model, adjust the eigenvalues in the low-dimensional matrix, eliminate noise in the model, and obtain cleaner data matrices to approximate the objective matrix, which significantly improves the performance of the model and its generalization ability. Furthermore, to solve the iterative optimization schemes of TRNMTF, this study converts the objective function into elemental form to infer and provide detailed iterative update rules. Experimental results on 8 data sets show that the proposed model displays superior performance.

合写作者:TianruiLi,Shi-JinnHorng,ZengYu,XiaominWang

第一作者:Ping Deng

论文类型:学术论文

通讯作者:HongjunWang

论文编号:20212110403246

学科门类:工学

一级学科:计算机科学与技术

卷号:Volume 226

期号:107101

页面范围:1-12

ISSN号:0950-7051

是否译文:

发表时间:2021-05-13