王红军 研究员

博士生导师

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hybrid Genetic Model for Clustering Ensemble

影响因子:8.139

DOI码:10.1016/j.knosys.2021.107457

所属单位:西南交通大学

发表刊物:Knowledge-Based Systems

刊物所在地:NETHERLANDS

关键字:ClusteringClustering ensembleGenetic algorithmHybrid genetic model

摘要:Clustering ensemble has received considerable research interest and led to a proliferation of studies, since it has great capabilities to combine multiple base clusters to generate a more robust and stable consensus result. Genetic algorithms are optimization methods which can search heuristically by simulating the natural evolution process with highly parallel and adaptive characteristics. However, to our knowledge, there are very few existing methods using a genetic model to solve clustering ensemble problems. In this paper, a novel hybrid genetic model for clustering ensemble (HGMCE) is proposed innovatively, and the corresponding objective function is designed. Each base clustering is regarded as a new attribute of data, and the result of clustering ensemble can be evaluated by the objective function. Then the proposed model can be inferred with the optimization, combination, and transcendence of base clustering results step by step, which makes it possible to maintain the diversity of the population and provides more possibilities to avoid falling into the local optimal solution. Furthermore, an algorithm named HGCEA corresponding to the proposed model is designed to solve the clustering ensemble problem. To evaluate the potential of HGCEA, extensive experiments are carried out on ten real datasets, including comparison with clustering groups and clustering ensemble groups. The results of accuracy and normalized mutual information demonstrate the superiority of the proposed algorithm in integrating effective clustering over the state-of-the-art.

合写作者:YinghuiZhang,PingDenga,TianruiLi

第一作者:Wenlu Yang

论文类型:学术论文

通讯作者:Hongjun Wang

论文编号:20213710877787

学科门类:工学

一级学科:计算机科学与技术

卷号:Volume 231

期号:107457

页面范围:1-12

ISSN号:0950-7051

是否译文:

发表时间:2021-09-02