王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Unsupervised Feature Learning Architecture with Multi-clustering Integration RBM

影响因子:9.235

DOI码:10.1109/TKDE.2020.3015959

所属单位:西南交通大学

发表刊物:IEEE Transactions on Knowledge and Data Engineering

刊物所在地:UNITED STATES

关键字:Image reconstruction,Training,Feature extraction,Task analysis,Clustering algorithms,Machine learning,Encoding

摘要:In this paper, we present a novel unsupervised feature learning architecture, which consists of a multi-clustering integration module and a variant of RBM termed multi-clustering integration RBM (MIRBM). In the multi-clustering integration module, we apply three clusterers (K-means, affinity propagation and spectral clustering algorithms) to obtain three different clustering partitions (CPs) without any background knowledge or label. Then, an unanimous voting strategy is used to generate a local clustering partition (LCP). The novel MIRBM model is a core feature encoding part of the proposed unsupervised feature learning architecture. The novelty of it is that the LCP as an unsupervised guidance is integrated into one step contrastive divergence (CD1CD1) learning to guide the distribution of the hidden layer features. For the instance in the same LCP cluster, the hidden and reconstructed hidden layer features of the MIRBM model in the proposed architecture tend to constrict together in the training process. Meanwhile, each LCP center tends to disperse from each other as much as possible in the hidden and reconstructed hidden layer during training. The experiments demonstrate that the proposed unsupervised feature learning architecture has more powerful feature representation and generalization capability than the state-of-the-art models for clustering tasks in the Microsoft Research Asia Multimedia (MSRA-MM)2.0 dataset.

合写作者:Jing Liu, Zhiguo Gong,李天瑞

第一作者:Jielei Chu

论文类型:学术论文

通讯作者:HongjunWang

论文编号:20203809195020

学科门类:工学

一级学科:计算机科学与技术

卷号:Volume: 34

页面范围:3002 - 3015

ISSN号:1041-4347

是否译文:

发表时间:2022-06-01