硕士生导师
个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
办公地点:犀浦3号教学楼31529
毕业院校:四川大学
学科:电子信息. 软件工程. 计算机应用技术
所在单位:计算机与人工智能学院
报考该导师研究生的方式
欢迎你报考王红军老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。
4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
Constraint Co-projections for Semi-supervised Co-clustering
影响因子:19.118
DOI码:10.1109/TCYB.2015.2496174
所属单位:西南交通大学
发表刊物:IEEE Transactions on Cybernetics
刊物所在地:UNITED STATES
关键字:Constraint co-projections, pairwise constraints, semi-supervised co-clustering
摘要:Co-clustering aims to simultaneously cluster the objects and features to explore intercorrelated patterns. However, it is usually difficult to obtain good co-clustering results by just analyzing the object-feature correlation data due to the sparsity of the data and the noise. Meanwhile, most co-clustering algorithms cannot take the prior information into consideration and may produce unmeaningful results. Semi-supervised co-clustering aims to incorporate the known prior knowledge into the co-clustering algorithm. In this paper, a new technique named constraint co-projections for semi-supervised co-clustering (CPSSCC) is presented. Constraint co-projections can not only make use of two popular techniques including pairwise constraints and constraint projections, but also simultaneously perform the object constraint projections and feature constraint projections. The two popular techniques are illustrated for semi-supervised co-clustering when some objects and features are believed to be in the same cluster a priori. Furthermore, we also prove that the co-clustering problem can be formulated as a typical eigen-problem and can be efficiently solved with the selected eigenvectors. To the best of our knowledge, constraint co-projections is first stated in this paper and this is the first work on using CPSSCC. Extensive experiments on benchmark data sets demonstrate the effectiveness of the proposed method. This paper also shows that CPSSCC has some favorable features compared with previous related co-clustering algorithms.
合写作者:Hongjun Wang, Tao Li, Yan Yang,李天瑞
第一作者:Shudong Huang
论文类型:学术论文
论文编号:20154701588392
学科门类:工学
一级学科:计算机科学与技术
卷号:Volume: 46
期号:Issue: 12, December 2016
页面范围:3047 - 3058
ISSN号:2168-2275
是否译文:否
发表时间:2015-11-13