王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Semi-supervised Hierarchical Clustering Ensemble and Its Application

影响因子:5.779

DOI码:10.1016/j.neucom.2015.09.009

所属单位:西南交通大学

发表刊物:Neurocomputing

刊物所在地:NETHERLANDS

关键字:Clustering ensembleSemi-supervisedCHAMELEONFault diagnosis

摘要:Clustering ensemble is an important part of ensemble learning. It aims to study and integrate multiple clustering results from different clustering algorithms or same algorithm with different initial parameters for the same dataset. CHAMELEON is a hierarchical clustering algorithm which can discover natural clusters of different shapes and sizes as the result of its merging decision dynamically adapts to the different clustering model characterized. Inspired by the idea of CHAMELEON, the paper proposes a novel clustering ensemble models including semi-supervised method and discusses its application in fault diagnosis of high speed train (HST) running gear. The contributions of this paper include: constructing a sparse graph via the similarity matrix which aggregates multiple clustering results; partitioning the sparse graph (vertex=object, edge weight=similarity) into a large number of relatively small sub-clusters; obtaining the final clustering partition by merging these sub-clusters repeatedly. The experimental results demonstrate that our method outperforms some of state-of-the-art ensemble algorithms regarding the accuracy and stability and recognizes fault patterns of HST running gear effectively.

合写作者:Hongjun Wang,李天瑞, Huanlai Xin

第一作者:Wenchao Xiao

论文类型:学术论文

通讯作者:Yan Yang

论文编号:20155101706995

学科门类:工学

一级学科:计算机科学与技术

卷号:Volume 173, Part 3

期号:15 January 2016

页面范围:Pages 1362-1376

ISSN号:0925-2312

是否译文:

发表时间:2015-09-10