遆子龙 副教授

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:隧道研发楼505

性别:

在职信息:在岗

毕业院校:西南交通大学

所在单位:土木工程学院

报考该导师研究生的方式

欢迎你报考遆子龙老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择遆子龙老师,你的所有申请信息将发送给遆子龙老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请遆子龙老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为遆子龙老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考遆子龙老师招收的专业和方向,进入复试后提交导师意向时选择遆子龙老师。

4、如果你有兴趣攻读遆子龙老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭
当前位置: 中文主页 >> 科研信息
  • (1)跨海桥梁水动力作用

      波流荷载是跨海桥梁下部结构的主要环境荷载,其水动力可达内河桥梁的十倍以上。基于时域、频域常数/高阶边界元,建立了规则、随机波流作用下跨海桥梁水动力作用的边界元数值方法,并对平潭海峡公铁大桥非通航孔钢围堰开展了实测和对比。

                          

      平潭海峡公铁大桥波浪压力实测        实测波浪压力对比            边界元数值模型


    (2)桥梁水弹耦合响应与数值方法

       波浪频域与结构频率接近时,会产生流固耦合振动,双向流固耦合(水弹)效应会影响荷载、波浪场与结构响应。使用时域、频域常数/高阶边界元与摄动展开假设,研究基于模态叠加的频域双向耦合,以及基于逐步积分的时域双向耦合水弹响应和算法。

          动画7.gif

           频域边界元                                   时域边界元


    (3)跨海桥梁的风浪响应

       极端海况下,风浪可能引起大跨度跨海桥梁显著的动力响应。由台风气旋过境时的实测风浪数据,基于谱方法,研究实测数据驱动下大桥的非平稳、平稳风浪响应。


    图片9.png

    基于谱方法的跨海桥梁风浪响应评估


    (4)深度学习驱动的跨海桥梁智能防灾

       极端风浪的高效准确预一直是大气、物理海洋与近岸工程的热点与难点。采用深度学习技术,建立了“秒级响应”的西太平洋时空波浪场预测模型,全时误差RMSE<0.4m。对2015年,经过平潭海峡公铁大桥的超强台风"苏迪罗"引发的波浪场进行了验证。


    动画5.gif

    西太平洋波浪场深度学习数值模型




  • line.jpg

    部分代表性论文:

    Ti, Z.; Li, Y.; Qin, S. Numerical Approach of Interaction between Wave and Flexible Bridge Pier with Arbitrary Cross Section Based on Boundary Element Method. Journal of Bridge Engineering 202025 (11), 04020095. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001628.

    Ti, Z.; Wei, K.; Li, Y.; Xu, B. Effect of Wave Spectral Variability on Stochastic Response of a Long-Span Bridge Subjected to Random Waves during Tropical Cyclones. Journal of Bridge Engineering 202025 (1), 04019131. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001517.

    Ti, Z.; Zhang, M.; Li, Y.; Wei, K. Numerical Study on the Stochastic Response of a Long-Span Sea-Crossing Bridge Subjected to Extreme Nonlinear Wave Loads. Engineering Structures 2019196, 109287. https://doi.org/10.1016/j.engstruct.2019.109287.

    Ti, Z.; Zhou, Y.; Li, Y. On-Site Wave-Wind Observation and Spectral Investigation of Dynamic Behaviors for Sea-Crossing Bridge during Tropical Cyclone. Engineering Structures 2023283, 115907. https://doi.org/10.1016/j.engstruct.2023.115907.

    Pan, J.; Ti, Z.; Song, Y.; Li, Y. An Integrated Approach of Vortex-Induced Vibration for Long-Span Bridge with Inhomogeneous Cross-Sections. Journal of Wind Engineering and Industrial Aerodynamics 2022222, 104942. https://doi.org/10.1016/j.jweia.2022.104942.

    Pan, J.; Ti, Z.; Yang, L.; Li, Y.; Zhu, J. An Amplitude-Dependent Nonlinear Approach for Vortex-Induced Vibration Evaluation of Long-Span Bridges with Inhomogeneous Cross-Sections. Physics of Fluids 202436 (7), 077159. https://doi.org/10.1063/5.0215257.

    Song, Y.; Ti, Z.; Li, Y. An Efficient Two-Stage Hybrid Framework to Evaluate Vortex-Induced Vibration for Bridge Deck Based on Divergent Vibration. Journal of Wind Engineering and Industrial Aerodynamics 2023233, 105316. https://doi.org/10.1016/j.jweia.2023.105316.

    Ti, Z.; Kong, Y. F. Single-Instant Spatial Wave Height Forecast Using Machine Learning: An Image-to-Image Translation Approach Based on Generative Adversarial Networks. Applied Ocean Research 2024.

    Ti, Z.; Deng, X. W.; Yang, H. Wake Modeling of Wind Turbines Using Machine Learning. Applied Energy 2020257, 114025. https://doi.org/10.1016/j.apenergy.2019.114025.

    Ti, Z.; Deng, X. W.; Zhang, M. Artificial Neural Networks Based Wake Model for Power Prediction of Wind Farm. Renewable Energy 2021172, 618–631. https://doi.org/10.1016/j.renene.2021.03.030.

    Ti, Z.; Wang, H. Hydrodynamic Shape Optimization of Sea-Crossing Bridge Pier under Wave Force. Ocean Engineering 2024299, 117281. https://doi.org/10.1016/j.oceaneng.2024.117281.

    Ti, Z.; Wang, Y.; Song, Y. Frequency-Domain Approach of Aero-Hydro-Elastic Response for Offshore Bottom-Mounted Slender Structures under Wind and Wave. Ocean Engineering 2022260, 111795. https://doi.org/10.1016/j.oceaneng.2022.111795.

    Ti, Z.; Yang, L.; Li, Y. On-Site Wind Speed Recovery from Smartphone Audio: Time Domain Deep Learning Approach, Laboratory Validation and Outdoor Field Test. Measurement 2024229, 114477. https://doi.org/10.1016/j.measurement.2024.114477.

    Ti, Z.; You, H. Time Domain Boundary Element Modeling of Coupled Interaction between Ocean Wave and Elastic Bridge Pier. Ocean Engineering 2023269, 113527. https://doi.org/10.1016/j.oceaneng.2022.113527.

    Ti, Z.; Zhang, M.; Wu, L.; Qin, S.; Wei, K.; Li, Y. Estimation of the Significant Wave Height in the Nearshore Using Prediction Equations Based on the Response Surface Method. Ocean Engineering 2018153, 143–153. https://doi.org/10.1016/j.oceaneng.2018.01.081.

    Ti, Z.; Zhou, Y. Frequency Domain Modeling of Long-Span Sea-Crossing Bridge under Stochastic Wind and Waves. Ocean Engineering 2022255, 111425. https://doi.org/10.1016/j.oceaneng.2022.111425.

    Wang, H. Ti, Z. Wave Force Prediction on Truncated Cylinders with Arbitrary Symmetric Cross-Sections Using Machine Learning. Ocean Engineering 2024.

    Zilong, T.; Xiao Wei, D. Layout Optimization of Offshore Wind Farm Considering Spatially Inhomogeneous Wave Loads. Applied Energy 2022306, 117947. https://doi.org/10.1016/j.apenergy.2021.117947.

    Zilong, T.; Yubing, S.; Xiaowei, D. Spatial-Temporal Wave Height Forecast Using Deep Learning and Public Reanalysis Dataset. Applied Energy 2022326, 120027. https://doi.org/10.1016/j.apenergy.2022.120027.

    Ling, Y.; Ti, Z.; You, H.; Li, Y. A Proof-of-Concept Study of Estimating Wind Speed from Acoustic Frequency-Domain Signal Using Machine Learning. Wind and Structures 202336 (5), 345–354. https://doi.org/10.12989/WAS.2023.36.5.345.

    Pan, J.; Ti, Z.; You, H. Probability Distribution Analysis of Hydrodynamic Wave Pressure on Large-Scale Thin-Walled Structure for Sea-Crossing Bridge. JMSE 202311 (1), 81. https://doi.org/10.3390/jmse11010081.

    Ti, Z.; Wang, Y.; Song, Y. Frequency-Domain Approach of Hydroelastic Response for Offshore Bottom-Mounted Slender Structure. Ships and Offshore Structures 20220 (0), 1–12. https://doi.org/10.1080/17445302.2022.2109351.

    Ti, Z.; Wei, K.; Qin, S.; Li, Y.; Mei, D. Numerical Simulation of Wave Conditions in Nearshore Island Area for Sea-Crossing Bridge Using Spectral Wave Model. Advances in Structural Engineering 201821 (5), 756–768. https://doi.org/10.1177/1369433217732493.

    Ti, Z.; Wei, K.; Qin, S.; Mei, D.; Li, Y. Assessment of Random Wave Pressure on the Construction Cofferdam for Sea-Crossing Bridges under Tropical Cyclone. Ocean Engineering 2018160, 335–345. https://doi.org/10.1016/j.oceaneng.2018.04.036.

    Wang, Y.; Ti, Z. Numerical Modeling of Hydrodynamic Added Mass and Added Damping for Elastic Bridge Pier. ABEN 20234 (1), 24. https://doi.org/10.1186/s43251-023-00104-2.

    Song, X.; Ti, Z.; Zhou, Y. Estimation of Directional Wave Spectrum Using Measurement Array Pressure Data on Bottom-Mounted Offshore Structure in Incident and Diffracted Wave Field. Shock and Vibration 20222022, e9764478. https://doi.org/10.1155/2022/9764478.