硕士生导师
个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
办公地点:隧道研发楼505
性别:男
在职信息:在岗
毕业院校:西南交通大学
所在单位:土木工程学院
报考该导师研究生的方式
欢迎你报考遆子龙老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择遆子龙老师,你的所有申请信息将发送给遆子龙老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请遆子龙老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为遆子龙老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考遆子龙老师招收的专业和方向,进入复试后提交导师意向时选择遆子龙老师。
4、如果你有兴趣攻读遆子龙老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
部分代表性论文:
Ti, Z.; Li, Y.; Qin, S. Numerical Approach of Interaction between Wave and Flexible Bridge Pier with Arbitrary Cross Section Based on Boundary Element Method. Journal of Bridge Engineering 2020, 25 (11), 04020095. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001628.
Ti, Z.; Wei, K.; Li, Y.; Xu, B. Effect of Wave Spectral Variability on Stochastic Response of a Long-Span Bridge Subjected to Random Waves during Tropical Cyclones. Journal of Bridge Engineering 2020, 25 (1), 04019131. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001517.
Ti, Z.; Zhang, M.; Li, Y.; Wei, K. Numerical Study on the Stochastic Response of a Long-Span Sea-Crossing Bridge Subjected to Extreme Nonlinear Wave Loads. Engineering Structures 2019, 196, 109287. https://doi.org/10.1016/j.engstruct.2019.109287.
Ti, Z.; Zhou, Y.; Li, Y. On-Site Wave-Wind Observation and Spectral Investigation of Dynamic Behaviors for Sea-Crossing Bridge during Tropical Cyclone. Engineering Structures 2023, 283, 115907. https://doi.org/10.1016/j.engstruct.2023.115907.
Pan, J.; Ti, Z.; Song, Y.; Li, Y. An Integrated Approach of Vortex-Induced Vibration for Long-Span Bridge with Inhomogeneous Cross-Sections. Journal of Wind Engineering and Industrial Aerodynamics 2022, 222, 104942. https://doi.org/10.1016/j.jweia.2022.104942.
Pan, J.; Ti, Z.; Yang, L.; Li, Y.; Zhu, J. An Amplitude-Dependent Nonlinear Approach for Vortex-Induced Vibration Evaluation of Long-Span Bridges with Inhomogeneous Cross-Sections. Physics of Fluids 2024, 36 (7), 077159. https://doi.org/10.1063/5.0215257.
Song, Y.; Ti, Z.; Li, Y. An Efficient Two-Stage Hybrid Framework to Evaluate Vortex-Induced Vibration for Bridge Deck Based on Divergent Vibration. Journal of Wind Engineering and Industrial Aerodynamics 2023, 233, 105316. https://doi.org/10.1016/j.jweia.2023.105316.
Ti, Z.; Kong, Y. F. Single-Instant Spatial Wave Height Forecast Using Machine Learning: An Image-to-Image Translation Approach Based on Generative Adversarial Networks. Applied Ocean Research 2024.
Ti, Z.; Deng, X. W.; Yang, H. Wake Modeling of Wind Turbines Using Machine Learning. Applied Energy 2020, 257, 114025. https://doi.org/10.1016/j.apenergy.2019.114025.
Ti, Z.; Deng, X. W.; Zhang, M. Artificial Neural Networks Based Wake Model for Power Prediction of Wind Farm. Renewable Energy 2021, 172, 618–631. https://doi.org/10.1016/j.renene.2021.03.030.
Ti, Z.; Wang, H. Hydrodynamic Shape Optimization of Sea-Crossing Bridge Pier under Wave Force. Ocean Engineering 2024, 299, 117281. https://doi.org/10.1016/j.oceaneng.2024.117281.
Ti, Z.; Wang, Y.; Song, Y. Frequency-Domain Approach of Aero-Hydro-Elastic Response for Offshore Bottom-Mounted Slender Structures under Wind and Wave. Ocean Engineering 2022, 260, 111795. https://doi.org/10.1016/j.oceaneng.2022.111795.
Ti, Z.; Yang, L.; Li, Y. On-Site Wind Speed Recovery from Smartphone Audio: Time Domain Deep Learning Approach, Laboratory Validation and Outdoor Field Test. Measurement 2024, 229, 114477. https://doi.org/10.1016/j.measurement.2024.114477.
Ti, Z.; You, H. Time Domain Boundary Element Modeling of Coupled Interaction between Ocean Wave and Elastic Bridge Pier. Ocean Engineering 2023, 269, 113527. https://doi.org/10.1016/j.oceaneng.2022.113527.
Ti, Z.; Zhang, M.; Wu, L.; Qin, S.; Wei, K.; Li, Y. Estimation of the Significant Wave Height in the Nearshore Using Prediction Equations Based on the Response Surface Method. Ocean Engineering 2018, 153, 143–153. https://doi.org/10.1016/j.oceaneng.2018.01.081.
Ti, Z.; Zhou, Y. Frequency Domain Modeling of Long-Span Sea-Crossing Bridge under Stochastic Wind and Waves. Ocean Engineering 2022, 255, 111425. https://doi.org/10.1016/j.oceaneng.2022.111425.
Wang, H. Ti, Z. Wave Force Prediction on Truncated Cylinders with Arbitrary Symmetric Cross-Sections Using Machine Learning. Ocean Engineering 2024.
Zilong, T.; Xiao Wei, D. Layout Optimization of Offshore Wind Farm Considering Spatially Inhomogeneous Wave Loads. Applied Energy 2022, 306, 117947. https://doi.org/10.1016/j.apenergy.2021.117947.
Zilong, T.; Yubing, S.; Xiaowei, D. Spatial-Temporal Wave Height Forecast Using Deep Learning and Public Reanalysis Dataset. Applied Energy 2022, 326, 120027. https://doi.org/10.1016/j.apenergy.2022.120027.
Ling, Y.; Ti, Z.; You, H.; Li, Y. A Proof-of-Concept Study of Estimating Wind Speed from Acoustic Frequency-Domain Signal Using Machine Learning. Wind and Structures 2023, 36 (5), 345–354. https://doi.org/10.12989/WAS.2023.36.5.345.
Pan, J.; Ti, Z.; You, H. Probability Distribution Analysis of Hydrodynamic Wave Pressure on Large-Scale Thin-Walled Structure for Sea-Crossing Bridge. JMSE 2023, 11 (1), 81. https://doi.org/10.3390/jmse11010081.
Ti, Z.; Wang, Y.; Song, Y. Frequency-Domain Approach of Hydroelastic Response for Offshore Bottom-Mounted Slender Structure. Ships and Offshore Structures 2022, 0 (0), 1–12. https://doi.org/10.1080/17445302.2022.2109351.
Ti, Z.; Wei, K.; Qin, S.; Li, Y.; Mei, D. Numerical Simulation of Wave Conditions in Nearshore Island Area for Sea-Crossing Bridge Using Spectral Wave Model. Advances in Structural Engineering 2018, 21 (5), 756–768. https://doi.org/10.1177/1369433217732493.
Ti, Z.; Wei, K.; Qin, S.; Mei, D.; Li, Y. Assessment of Random Wave Pressure on the Construction Cofferdam for Sea-Crossing Bridges under Tropical Cyclone. Ocean Engineering 2018, 160, 335–345. https://doi.org/10.1016/j.oceaneng.2018.04.036.
Wang, Y.; Ti, Z. Numerical Modeling of Hydrodynamic Added Mass and Added Damping for Elastic Bridge Pier. ABEN 2023, 4 (1), 24. https://doi.org/10.1186/s43251-023-00104-2.
Song, X.; Ti, Z.; Zhou, Y. Estimation of Directional Wave Spectrum Using Measurement Array Pressure Data on Bottom-Mounted Offshore Structure in Incident and Diffracted Wave Field. Shock and Vibration 2022, 2022, e9764478. https://doi.org/10.1155/2022/9764478.