我进入Gromov-Witten领域的文献路径
基础部分
研一上
1. 微分流形(differential manifold);
2. 基础拓扑学(孙以丰);
3. 代数拓扑(algebraic topology);
研一下
1. Riemannian geometry (metric, connection, curvature, e.t.c.)
2. Lecture on symplectic geometry, Ana de Silva;
3. J-holomorphic curve and quantum cohomology, Mcduff Salamon
文章阅读顺序(研一下研二上):
1. The moment map and equivariant cohomology, Atiyah&Bott;
2. Enumeration of rational curves via torus action, Kontsevich;
3. Localization of virtual classes, pandharipande;
4. Hodge integrals and Gromov-Witten theory.
附Gromov-Witten 理论的经典文献:
1. A mathematical theory of quantum cohomology, Ruan&Tian, JDG, 42,2, 1995;
2. Gromov-Witten classes, quantum cohomology, and enumerative geometry, Kontsevich&Yu. Manin, Comm. Math. Phys., 164:3(1994),525-562.