刘伟群 教授

博士生导师

硕士生导师

个人信息Personal Information


教师英文名称:LIU Weiqun

学历:博士研究生毕业

办公地点:西南交通大学机械馆

毕业院校:法国格勒诺布尔-阿尔卑斯大学

学科:动力工程及工程热物理. 车辆工程. 机械工程

所在单位:机械工程学院

报考该导师研究生的方式

欢迎你报考刘伟群老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择刘伟群老师,你的所有申请信息将发送给刘伟群老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请刘伟群老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为刘伟群老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考刘伟群老师招收的专业和方向,进入复试后提交导师意向时选择刘伟群老师。

4、如果你有兴趣攻读刘伟群老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

论文列表

期刊论文( * 代表通讯作者)

[1]  Yuan Z, Liu W*, Ye M. A mapping method of dynamic response and stiffness characteristics for realizing a customized nonlinear oscillator[J]. Nonlinear Dynamics, 2020,102 (4), 2531-2548.  https://doi.org/10.1007/s11071-020-06089-1

[2]  Huang Y, Liu W*, Yuan Y, Zhang Z. High-energy orbit attainment of a nonlinear beam generator by adjusting the buckling level[J]. Sensors and Actuators A: Physical, 2020, 321:112164.

[3]  Gu Y, Liu W*, Zhao C*, et al. A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting[J]. Applied Energy, 2020, 266: 114846.

[4]  Liu W*, Huang Y, Wang J, et al. Energy Current Analysis of an Improved Self-Adaptive Mechatronic Approach for P-SSHI[J]. IEEE Transactions on Industrial Electronics, 2020.

[5]  Zhang Y, Bian K*, Gu Y, Ye M, Tian W, Liu W*. Cost-effective and scalable rectifier design for multiple piezoelectric power sources with improved performance[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(1): 167-181.

[6]  Zhu Q, Xu M, Liu W*, et al. A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter[J]. Energy, 2019, 187: 115880.

[7]  Liu W*, Yuan Z, Zhang S, et al. Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling[J]. Applied Energy, 2019, 251: 113412.

[8]  Yuan Z, Liu W*, Zhang S, et al. Bandwidth broadening through stiffness merging using the nonlinear cantilever generator [J]. Mechanical Systems and Signal Processing, 2019, 132:1-17.

[9]  Liu W*, Qin G, Zhu Q*, et al. Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting [J]. Applied Energy, 2018, 230: 1292-1303.

[10] Liu W*, Badel A, Formosa F, et al. Comparative case study on the self-powered synchronous switching harvesting circuits with BJT or MOSFET switches [J]. IEEE Transactions on Power Electronics, 2018, 33(11): 9506-9519.

[11] Liu W*, Badel A, Formosa F, et al. A comprehensive analysis and modeling of the self-powered synchronous switching harvesting circuit with electronic breakers [J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 3899-3909.

[12] Liu W, Zhao C*, Badel A, et al. Compact self-powered synchronous energy extraction circuit design with enhanced performance [J]. Smart Materials and Structures, 2018, 27(4): 047001.

[13] Liu W, Qin G, Zhu Q*, et al. Self-adaptive memory foam switches for piezoelectric synchronous harvesting circuits [J]. Smart Materials and Structures, 2018, 27(11): 117003.

[14] Liu W, Liu C, Li X*, et al. Comparative study about the cantilever generators with different curve fixtures[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9): 1884-1899.

[15] Gu X, Liu W, Guo L, et al. Hybridization of integrated microwave and mechanical power harvester[J]. IEEE Access, 2018, 6: 13921-13930.

[16] Wu Y, Ji H, Qiu J, Liu W, et al. An internal resonance based frequency up-converting energy harvester [J]. Journal of Intelligent Material Systems and Structures, 2018, 29(13): 2766-2781.

[17] Liu W, Formosa F*, Badel A. Optimization study of a piezoelectric bistable generator with doubled voltage frequency using harmonic balance method [J]. Journal of Intelligent Material Systems and Structures, 2017, 28(5): 671-686.

[18] Liu W*, Formosa F, Badel A, et al. A simplified lumped model for the optimization of post-buckled beam architecture wideband generator [J]. Journal of Sound and Vibration, 2017, 409: 165-179.

[19] Zhu Q, Yue J Z, Liu W*, et al. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method [J]. Smart Materials and Structures, 2017, 26(4): 047003.

[20] Liu C, Zhu Q, Li L, Liu W, et al. A State of Charge Estimation Method Based on H∞ Observer for Switched Systems of Lithium-Ion Nickel–Manganese–Cobalt Batteries [J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8128-8137.

[21] Chen Y, Huang D, Zhu Q, Liu W, et al. A new state of charge estimation algorithm for lithium-ion batteries based on the fractional unscented kalman filter [J]. Energies, 2017, 10(9): 1313.

[22] Liu C, Liu W*, Wang L, et al. A new method of modeling and state of charge estimation of the battery [J]. Journal of Power sources, 2016, 320: 1-12.

[23] Liu W*, Liu C, Ren B, et al. Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator[J]. Applied Physics Letters, 2016, 109(4): 043905.

[24] Liu W*, Formosa F, Badel A, et al. Investigation of a buckled beam generator with elastic clamp boundary [J]. Smart Materials and Structures, 2016, 25(11): 115045.

[25] Liu W, Badel A*, Formosa F, et al. A new figure of merit for wideband vibration energy harvesters [J]. Smart Materials and Structures, 2015, 24(12): 125012.

[26] Liu W, Badel A*, Formosa F, et al. A wideband integrated piezoelectric bistable generator: experimental performance evaluation and potential for real environmental vibrations [J]. Journal of Intelligent Material Systems and Structures, 2015, 26(7): 872-877.

[27] Zhu Q, Hu G D, Liu W. Iterative learning control design method for linear discrete-time uncertain systems with iteratively periodic factors[J]. IET Control Theory & Applications, 2015, 9(15): 2305-2311.

[28] Lorenz C H P, Hemour S, Liu W, et al. Hybrid power harvesting for increased power conversion efficiency[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(10): 687-689.

[29] Liu W*, Formosa F, Badel A, et al. Self-powered nonlinear harvesting circuit with a mechanical switch structure for a bistable generator with stoppers [J]. Sensors and Actuators A: Physical, 2014, 216: 106-115.

[30] Wu Y, Badel A, Formosa F, Liu W, et al. Self-powered optimized synchronous electric charge extraction circuit for piezoelectric energy harvesting [J]. Journal of Intelligent Material Systems and Structures, 2014, 25(17): 2165-2176.

[31] Wu Y, Badel A, Formosa F, Liu W, et al. Nonlinear vibration energy harvesting device integrating mechanical stoppers used as synchronous mechanical switches[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(14): 1658-1663.

[32] Liu W*, Badel A, Formosa F, et al. Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting[J]. Smart materials and structures, 2013, 22(3): 035013.

[33] Liu W*, Badel A, Formosa F, et al. Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester[J]. Smart Materials and Structures, 2013, 22(12): 125038.

[34] Wu Y, Badel A, Formosa F, Liu W, et al. Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction [J]. Journal of Intelligent Material Systems and Structures, 2013, 24(12): 1445-1458.

[35] Liu W, Feng Z H*, He J, et al. Maximum mechanical energy harvesting strategy for a piezoelement[J]. Smart Materials and Structures, 2007, 16(6): 2130.

[36] Liu W, Feng Z H*, Liu R B, et al. The influence of preamplifiers on the piezoelectric sensor’s dynamic property [J]. Review of Scientific Instruments, 2007, 78(12): 125107.

 

国际会议论文

[1]  Yuan Z, Liu W*, Tian W, et al. Synchronous circuits with self-adaptive mechanical switches of viscous material: a parameter study[C]//Journal of Physics: Conference Series. IOP Publishing, 2019, 1407(1): 012046.

[2]  Yuan Z, Liu W*, Tang H. Research on the design limitations of the nonlinear cantilever with curve fixtures[C]//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2019: 1604-1608.

[3]  Liu W*, Zhang S, Badel A, et al. Performance enhancement by an improved compact design for self-powered synchronous switching harvesting circuits[C]//Journal of Physics: Conference Series. IOP Publishing, 2018, 1052(1): 012071. (Kanazawa, JAPAN)

[4]  Liu W*, Liu C, Zhu Q, et al. Bandwidth improvement by a novel piece-wise generator design with extended nonlinearities[C]//Active and Passive Smart Structures and Integrated Systems 2017. International Society for Optics and Photonics, 2017, 10164: 101642S. ( Portland)

[5]  Liu W*, Badel A, Formosa F, et al. An improved switching control law for the optimized synchronous electric charge extraction circuit[C]//Journal of Physics: Conference Series. IOP Publishing, 2015, 660(1): 012097. (Boston, MA)

[6]  Liu W*, Badel A, Formosa F, et al. Integrated bistable generator for wideband energy harvesting with optimized synchronous electric charge extraction circuit[C]//Journal of Physics: Conference Series. IOP Publishing, 2013, 476(1): 012107. (Imperial Coll London, London, ENGLAND )

[7]  Liu W*, Badel A, Formosa F, et al. Design and optimization of a novel bistable power generator for autonomous sensor nodes[C]//2013 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP). IEEE, 2013: 1-4. (Barcelona, SPAIN)

[8]  Wu Y, Badel A, Formosa F, Liu W, et al. Two self-powered energy harvesting interfaces based on the optimized synchronous electric charge extraction technique[C]//Journal of Physics: Conference Series. IOP Publishing, 2013, 476(1): 012098. (Imperial Coll London, London, ENGLAND )

[9]  Wu Y, Badel A, Formosa F, Liu W, et al. Vibration Energy Extraction Circuit Optimization by Optimized Synchronous Electric Charge Extraction and Its Self-powered Circuit[C]//The 23rd International Conference on Adaptive Structures and Technologies ICAST 2012. 2012: pp. NC. (Nanjing, China)