敬霖 研究员

博士生导师

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:A1楼203

学科:力学. 车辆工程. 载运工具运用工程

所在单位:轨道交通运载系统全国重点实验室

报考该导师研究生的方式

欢迎你报考敬霖老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择敬霖老师,你的所有申请信息将发送给敬霖老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请敬霖老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为敬霖老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考敬霖老师招收的专业和方向,进入复试后提交导师意向时选择敬霖老师。

4、如果你有兴趣攻读敬霖老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

工程结构材料力学行为研究方向(部分):

[1] Y. Liu, S. Zhang, C. Feng, X.Y. Su, Y. Chen, L. Jing*. Dynamic mechanical behaviors of pearlitic U71MnG rail steel: deformation mechanisms and constitutive model. Materials Science & Engineering A, 2024, 897: 146353.

[2] Y. Liu, X.B. Liu, C. Feng, C.C. Koch*, L. Jing*. Mechanical properties and microstructure of the heterogeneous DZ2 axle steel under high-strain-rate compression at ambient temperature. Journal of Materials Research and Technology, 2023, 26: 8456-8471.

[3] L. Jing*, X.Y. Su, C. Feng, L. Zhou. Strain-rate dependent tensile response of railway wheel/rail steels with initial equivalent fatigue damage: experiment and constitutive modeling. Engineering Fracture Mechanics, 2022, 275: 108839.

[4] Su X.Y., Zhou L., Deng G.D., Zhao L.M., Jing L*Compressive mechanical properties of styrene-butadiene rubber under medium-low strain rates: Experiments and modeling. Theoretical and Applied Fracture Mechanics, 2024, 131: 104454.

[5] Liu K., Jing L.*, Li Q.M. Dynamic crushing failure and energy absorption of natural bamboo-culms under axial low-velocity impact. International Journal of Impact Engineering, 2024, 193: 105056.

[6] 敬霖*,冯超,苏兴亚,刘颖. 高速动车组D2车轮钢的率温耦合变形机理与本构关系. 科学通报,2022,67 (34): 4068-4079.

轮轨弹塑性力学行为研究方向(部分):

[1] J.N. Wang, X.F. Zhou, K. Liu*, K.Y. Wang, L. Jing*. Wheel-rail dynamic interaction induced by tread spalling integrating with pre-fatigue damage of materials. Computers & Structures, 2025, 308: 107640.

[2] J.N. Wang, L. Jing*, X.F. Zhou, K. Liu. Influence of material properties on the high-speed wheel-rail rolling contact behaviour. Vehicle System Dynamics, 2024, 62(7): 1686-1712.

[3] C.X. Huang, X.F. Zhou, Y. Chen, L. Jing*, K.Y. Wang. Multi-objective optimisation of wheel-rail adhesion for high-speed trains with aerodynamic lift wings. Vehicle System Dynamics, 2025, 63(2): 375-397.

[4] L. Jing, X.F. Zhou, K.Y. Wang*. An elastic-plastic theoretical analysis model of wheel-rail rolling contact behaviour. Acta Mechanica Sinica, 2023, 39: 422465.

[5] X.F. Zhou, S. Li, J.N. Wang, K.Y. Wang, L. Jing*. Fatigue crack growth in wheel-rail rolling-sliding contact: A perspective of elastic-plastic fracture mechanics criterion. Wear, 2023, 530-531: 205069.

[6] X.F. Zhou, J.N. Wang, L. Jing*. Coupling effects of strain rate and fatigue damage on wheel-rail rolling contact behavior: a dynamic finite element simulation. International Journal of Rail Transportation, 2023, 11(3): 317-338.

[7] 周雄飞, 王金能, 敬霖*, 王开云. 三维轮轨法向接触力学行为弹塑性理论分析. 固体力学学报, 2022, 43(4): 434-445.

[8] 王金能, 郭鑫, 敬霖*, 王开云.高速列车车轮踏面剥离引起的轮轨冲击力学响应有限元模拟. 爆炸与冲击, 2021, 42(4): 045103.

列车碰撞被动安全研究方向(部分):

[1] S.D. Zheng, L. Jing*, K. Liu, Z.H. Yu, Z. Zhao, K.Y. Wang. Crash energy management optimization of high-speed trains by machine learning methods. International Journal of Mechanical Sciences, 2024, 270: 109108.

[2] K. Liu, L. Jing*; K.Y. Wang, Q.M. Li. Design optimization of the bamboo-inspired foam-filled tube for high-speed train collision energy absorption. International Journal of

Mechanical Sciences, 2024, 271: 109128.

[3] Z.H. Yu, L. Jing*. Head injury mechanisms of the occupant under high-speed train rear-end collision. Theoretical and Applied Mechanics Letters, 2024, 14(5): 100537.

[4] Z.H. Yu, S.D. Zheng, K. Liu, Z.P. Gao, L.M. Zhao, L. Jing*A modified finite element dummy model of Chinese adult male used for train collision simulations. International Journal of Rail Transportation, 2024, 12(4): 709-732.

[5] 敬霖*,刘凯,王成全. 列车碰撞被动安全性与司乘人员冲击生物损伤研究进展. 爆炸与冲击,2021,41 (12): 121405.

[6] 于振浩,敬霖*,黄志辉. 高速列车追尾事故头颈部损伤的机械响应及风险评估. 应用力学学报,2024, 41 (1): 77-89.

轻量化复合材料及结构力学研究方向(部分):

[1] Zhou X.F., Jing L*Low-velocity impact response of sandwich panels with layered-gradient metal foam cores.  International Journal of Impact Engineering, 2024, 184: 104808.

[2] Zhou X.F., Jing L*. Large deflection response of sandwich beams with layered-gradient foam cores subjected to low-velocity impact. International Journal of Impact Engineering, 2023, 172: 104429.

[3] Zhou X.F., Jing L*. Deflection analysis of clamped square sandwich panels with layered-gradient foam cores under blast loading. Thin-Walled Structures, 2020, 157: 107141.

[4] Yu Z.H., Liu K., Zhou X.F., Jing L*. Low-velocity impact response of aluminum alloy corrugated sandwich beams used for high-speed trains. Thin-Walled Structures, 2023, 183: 110375.

[5] Chen D., Jing L*., Yang, F. Optimal design of sandwich panels with layered-gradient aluminum foam cores under air-blast loading. Composites Part B, 2019, 166: 169-186.

[6] Jing L*, Su XY, Chen D, Yang F, Zhao LM. Experimental and numerical study of sandwich beams with layered-gradient foam cores under low-velocity impact. Thin-Walled Structures, 2019, 135: 227-244.

[7] Jing L*, Su XY, Chen D, Yang F, Zhao LM. Experimental and numerical study of sandwich beams with layered-gradient foam cores under low-velocity impact. Thin-Walled Structures, 2019, 135: 227-244.

[8] Jing L*, Yang F, Zhao LM. Perforation resistance of sandwich panels with layered gradient metallic foam cores. Composite Structures; 2017, 171: 217-226.

[9] Jing L*, Wang ZH, Zhao LM. The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading. Composites Part B; 2016, 94: 52-63.