郑庆 副教授

硕士生导师

个人信息Personal Information


教师英文名称:ZHENG Qing

学历:博士研究生毕业

学位:工学博士学位

办公地点:西南交通大学九里校区机械馆2337

性别:

在职信息:在岗

毕业院校:天津大学

学科:机械制造及其自动化

所在单位:机械工程学院

报考该导师研究生的方式

欢迎你报考郑庆老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择郑庆老师,你的所有申请信息将发送给郑庆老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请郑庆老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为郑庆老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考郑庆老师招收的专业和方向,进入复试后提交导师意向时选择郑庆老师。

4、如果你有兴趣攻读郑庆老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

  1. Zheng Q, Teng P, Zhang K*, Ding G, Lai X, Li Z, Yuan Z. A generalized network with domain invariance and specificity representation for bearing remaining useful life prediction under unknown conditions[J]. Knowledge-Based Systems, 2025, 310: 112915. (中科院一区TOP)

  2. Zheng Q, Wang D, Zhang K*, Ma J, Ding G, Zhang Y, Yuan Z. A parametric study on the fatigue life of elevator brake wheels under multi-field coupling effects[J]. Engineering Failure Analysis, 2025, 167: 109061. 

  3. Zhang K, Wang B, Zheng Q*, Ding G, Ma J, Tang B. A novel fault diagnosis of high-speed train axle box bearings with adaptive curriculum self-paced learning under noisy labels[J/OL]. Structural Health Monitoring, 2025-03-03. 

  4. Tang W, Jiang W, Yang X*, Zheng Q*. Global sensitivity analysis of high-speed train dynamics system with high-dimensional inputs and multiple outputs[J/OL]. Vehicle System Dynamics, 2025-03-03.

  5. 丁国富刘名远谢家翔张剑张海柱郑庆*数字孪生制造装备高可用运行协同计算方法研究[J]. 西南交通大学学报, 2025, 60(01): 194-204.

  6. Zheng Q, Guo W, Ding G F, Zhang H Z*, Fu Z L, Qin S F, Peng W. Quantitative evaluation of crowd intelligence innovation system health: An ecosystem perspective[J]. Advanced Engineering Informatics, 2024, 60: 102423.  (中科院一区TOP)

  7. Zheng Q, Ding G, Zhang H*, Zhang K, Qin S, Wang S, Huang W, Liu Q. An application-oriented digital twin framework and the multi-model fusion mechanism[J]. International Journal of Computer Integrated Manufacturing, 2024, 37(10-11): 1294-1317.

  8. Zheng Q, Ding G*, Xie J, Li Z, Qin S, Wang S, Zhang H, Zhang K, Multi-stage cyber-physical fusion methods for supporting equipment’s digital twin applications[J]. International Journal of Advanced Manufacturing Technology, 2024, 132(11-12): 5783-5802. 

  9. Zhang B, Ding G, Zheng Q*, Zhang K, Qin S. Iterative updating of digital twin for equipment: Progress, challenges, and trends[J]. Advanced Engineering Informatics, 2024, 62(Part B): 102773. (中科院一区TOP)

  10. 刘云飞张楷菅紫倩郑庆*张越宏袁昭成焦子一丁国富. 基于深度SVDD-CVAE的轴承自适应阈值故障检测[J].机床与液压, 2024, 52(06): 177-183+195.

  11. Zhang H, Li R, Ding G, Qin S, Zheng Q*, He X. Nominal digital twin for new-generation product design[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128(3-4): 1317-1335.

  12. Zhang K, Li Z, Zheng Q*, Ding G, Tang B, Zhao M. Fault diagnosis with bidirectional guided convolutional neural networks under noisy labels[J]. IEEE Sensors Journal, 2023, 23(16): 18810-18820.

  13. Lai X, Zhang K*, Zheng Q*, Li Z, Ding G, Ding K. A frequency-spatial hybrid attention mechanism improved tool wear state recognition method guided by structure and process parameters[J]. Measurement, 2023, 214: 112833.

  14. Zheng Q, Ding G, Wang S, Zhong J, Teng P. Data mapping and management method for knowledge mining in the full lifecycle of equipment[C]//2023 IEEE Smart World Congress (SWC). IEEE, 2023: 809-815.

  15. Li Z, Zhang K, Lai X, Zheng Q*, Ding G. A novel remaining useful life prediction method for milling tool based on transfer hierarchical vision transformer[C]//2023 IEEE Smart World Congress (SWC). IEEE, 2023: 1-6.

  16. Tian Y, Wang S, Shen X, Zheng Q*. Crowdsourcing workers recommendation algorithm based on improved deep matrix factorization[C]//2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2023: 65-70.

  17.  沈旭王淑营田媛梦郑庆*.基于知识图谱和图注意力的群智设计任务推荐算法[J]. 计算机应用研究, 2023, 40(01): 115-121.

  18. 张韵王淑营郑庆*张海柱.保持细节几何特征的三维网格模型轻量化算法[J]. 计算机应用, 2023, 43(04): 1226-1232.

  19. Zheng Q, Ding G F, Li R, Zhang H Z*. User behaviors, roles, and contributions in product co-innovation community[C]//2021 26th International Conference on Automation and Computing (ICAC). IEEE, 2021: 1-6.

  20. 郑庆, 丁国富. 群智协同设计活动复杂性的度量模型及方法[J]. 西南交通大学学报, 2021, 56(05): 989-994+1010. 

  21. 农兴中, 史海欧, 袁泉, 曾文驱, 郑庆*, 丁国富. 城市轨道交通工程BIM技术综述[J]. 西南交通大学学报, 2021, 56(03): 451-460+448. 

  22. 史海欧, 袁泉, 张耘琳, 曾文驱, 郑庆*, 丁国富. 基于BIM交互与数据驱动的多专业正向协同设计技术[J]. 西南交通大学学报: 2021, 56(01): 176-181

  23.  Wang J, Yuan Q, Zhang Y, Wang S, Zheng Q*, Guo R. Research on BIM collaboration model and platform implementation technology based on specialty interaction[C]. 14th International FLINS Conference (FLINS 2020). 2020.

  24. Zheng Q, Guo W. Motivations for users participating in co-innovation communities: A case study of Local Motors[C]// ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection.

  25. Zheng Q, Guo W, An W*, Wang L*, Liang R. Factors facilitating user projects success in co-innovation communities[J]. Kybernetes, 2018, 47(4): 656-671.

  26. Guo W, Zheng Q, An W*, Peng W. User roles and contributions during the new product development process in collaborative innovation communities, Applied Ergonomics[J]. Applied Ergonomics, 2017, 63: 106-114.