张楷

副教授

入职时间:2021-06-29

学历:博士研究生毕业

学位:工学博士学位

办公地点:西南交通大学(九里校区)机械工程学院2348办公室

性别:男

在职信息:在岗

毕业院校:重庆大学

所在单位:机械工程学院

其他联系方式:

邮箱:

科学研究

当前位置: 中文主页 >> 科学研究
科研项目

    科研项目


    1. 2024.01~2024        主研         车轮状态分析与健康评估(企业横向)

    2.  2024.01~2024        主研                         基于大数据的风机传动链故障诊断算法引擎开发(企业横向)

    3.  2023.01~2025.12   主持                         高速列车轴箱轴承早期故障深度连续表征及标签容错辨识 .(国家自然科学基金青年项目:52205130)

    4.  2021.12~2024.11   子课题主持             基于大样本的轴承信号分解、故障诊断及寿命预测研究(国家重点研发计划:2021YFB3400702

    5. 2022.03~2023.12   主持                         匮乏数据约束深度学习的高速列车轴箱轴承状态评估方法(中央高校基本科研业务费:2682022CX006

    6. 2022.01~2026.12   子任务主持             基于工厂异构要素智能感知与互联的物理融合(四川省重大科技专项项目:2022ZDZX0002

    7. 2022.01~2022.12   主持                         基于数据驱动的城轨列车检运一体计划模型研究项目(企业横向)

    8. 2021.07~2023.12   主研                         面向产品全生命周期及闭环反馈的信息物理系统融合理论(国家重点研发计划:2020YFB1708000) 

    9. 2020.09~2023.12   参研                        大型旋转机组健康管理系统软件 (国家重点研发计划:2020YFB1709800

    10. 2020.01~2023.12  参研             深度迁移学习的非类同条件下空间滚动轴承寿命评估方法研究 .(国家自然科学基金面上项目:51975079)

    11. 2019.04~2021.04  主持                 深度学习融合多源信息的高速列车牵引齿轮箱早期故障诊断方法研究  (中央高校基本科研费:2018CDXYJX0019

    12. 2019.01~2021.12  参研             深度领域适应的空间滚动轴承变工况寿命状态匹配表征和预测方法

    13. 2019.02~2022.02  主研               深度学习融合多源信息的航空发动机转子系统早期故障智能预测方法  (重庆市重点项目:cstc2019jcyj-zdxmX0026

    14. 2018.01~2021.12  主研             协同深度学习的风电机组传动系统早期故障有效可靠预示方法研究 (国家自然科学基金面上项目:51775065

    15. 2015.11~2017.07  主研               高速铁路动车组全生命周期数据管理与综合863计划项目子课题,批准号:2015AA043701-02

    16. 2014.09~2015.11  参研              轨道客车转向架集成技术二期(企业横向)




论著成果

    学术著作

    [1] 丁国富,郑庆,张楷,刘贵杰,王淑营,张海柱,复杂装备全生命周期信息物理融合理论与方法, 科学出版社, 2023,12. ISBN 978-7-03-076118-7. 


    第一/通讯作者 期刊论文

    [27] Li ZZhang K*Zheng Q, Unsupervised fault detection with multi-source anomaly sensitivity enhancing convolutional autoencoder for high-speed train bogie bearings[J].Expert Systems with Applications, 2025, 127570. (中科院1区Top/JCR Q1IF 7.5

    [26] Ma J, Zhang K*Zheng Q, A Fault Diagnosis Method for Elevator Traction Machine Drum Brakes Based on Co-Correction with Complementary Labels[J]. Measurement, 2025. (中科院2/JCR Q1IF 5.6

    [25] Zhang K, Wang J, Zheng Q*, et al.Wear Anomaly Detection Method of Tunnel Boring Machine Disc Cutters Based on Anomaly-Attention Improved Long Short-Term Memory Autoencoder[J]. Measurement, 2025, 117497. (中科院2/JCR Q1IF 5.6

    [24] Zhang K, Wang B, Zheng Q*, et al. A novel fault diagnosis of high-speed train axle box bearings with adaptive curriculum self-paced learning under noisy labels[J]. Structural Health Monitoring, 2025: 14759217251313727. (中科院2/JCR Q1 IF 6.6,SCI:,EI:)

    [23] Zheng Q, Teng P, Zhang K*, et al. A generalized network with domain invariance and specificity representation for bearing remaining useful life prediction under unknown conditions[J]. Knowledge-Based Systems. Available online 22 December 2024, 112915.  (中科院1区Top/JCR Q1IF 7.2,SCI:,EI:

    [22]  Zheng Q, Wang D, Zhang K*, et al. A parametric study on the fatigue life of elevator brake wheels under multi-field coupling effects[J]. Engineering Failure Analysis, 2025, 167: 109061..  (中科院2/JCR Q1IF 4.4,SCI:001359626500001,EI:20244717386443

    [21] Huang F, Zhang K*, Zheng Q, et al. An Open-Set Method for Diagnosing Unknown Bogie Bearing Faults Using a Hybrid Open Score Relation Network[J]. IEEE Transactions on Instrumentation & Measurement. 2024.  (中科院2/JCR Q1IF 5.6,SCI:001346129100017,EI:20244417277258

    [20] Lai X, Zhang K*, Zheng Q, et al. DP2Net: A discontinuous physical property-constrained single-source domain generalization network for tool wear state recognition [J]. Mechanical Systems and Signal Processing, 2024.  (中科院1区Top/JCR Q1 IF 8.4SCI:001230576800001,EI:20241615930723)

    [19]  Huang F, Zhang K*, Li Z, et al. A rolling bearing fault diagnosis method based on interactive generative feature space oversampling-based autoencoder under imbalanced data[J]. Structural Health Monitoring, 2024: 147592172412482 09. (中科院2/JCR Q1 IF 6.6,SCI:001220150800001,EI:20242016092766)

    [18] Qin G, Zhang K*, Lai X, et al. An Adaptive Symmetric Loss in Dynamic Wide-Kernel ResNet for Rotating Machinery Fault Diagnosis Under Noisy Labels[J]. IEEE Transactions on Instrumentation and Measurement, 2024. (中科院2/JCR Q1IF 5.6,SCI:001197885000030,EI:20241215768343

    [17] 赖旭伟, 丁昆, 张楷*等. 基于可解释物理引导空间注意力改进的跨工艺参数立铣刀磨损辨识 [J/OL]. 机械工程学报, 1-11[2024-03-12]. http://kns.cnki.net/kcms/detail/11.2187.TH.20240118. 1103. 034.html.(机械工程领域高质量科技期刊分级T1,EI:20243516961760

    [16] Zuo T, Zhang K*, Zheng Q, et al. A hybrid attention-based multi-wavelet coefficient fusion method in RUL prognosis of rolling bearings [J]. Reliability Engineering & System Safety, 2023, 237: 109337.. ( 中科院1区Top/JCR Q1 IF 8.1,SCI:001000667300001,EI:20232014092477)

    [15] Zhang K, Tang B*, Deng L, et al. A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels [J]. Mechanical Systems and Signal Processing, 2021, 161: 107963. (中科院1区Top/JCR Q1 IF 8.4,SCI: 000670074900011,EI: 20211710255540)

    [14] Zhang K, Tang B*, Deng L, et al. Fault source location of wind turbine based on heterogeneous nodes complex network [J]. Engineering Applications of Artificial Intelligence, 2021, 103: 104300. (中科院1Top/JCR Q1IF 8.0,SCI: 000709743500002, EI: 20212210425770)

    [13] Zhang K, Tang B*, Deng L, et al. Fault Detection of Wind Turbines by Subspace Reconstruction-Based Robust Kernel Principal Component Analysis  [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. (中科院2/JCR Q1IF 5.6,SCI:000709736100001,EI: 20211810302812

    [12] Zhang K, Tang B*, Deng L, et al. A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox [J]. Measurement, 2021, 179: 109491. (ESI高被引SCI论文中科院2/JCR Q1IF 5.6,SCI: 000866496200004,EI: 20224212973672

    [11] Zhang K, Li Z, Zheng Q, et al. Fault Diagnosis With Bidirectional Guided Convolutional Neural Networks Under Noisy Labels  [J]. IEEE Sensors Journal, 2023. (中科院3/JCR Q1IF 4.3,SCI:001049997900095,EI:20232714336869)

    [10] Zhang K, Tang B*, Qin Y, et al. Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks [J]. Mechanical Systems and Signal Processing, 2019, 131: 243-260. (中科院1区Top/JCR Q1 IF 8.4,SCI:000487008600014, EI: 20192307001751)

    [9] Zhang K, Ding K*, Zheng Q, et al. A novel cross-bearing fault diagnosis method based on pseudo-label transitive domain adaptation networks [J]. Journal of Vibration and Control, 2023: 10775463231202550.  (中科院3区/JCR Q1,IF 2.8,SCI:001068209800001,EI:20233814763906

    [8] Zhang K*, Liu Y, Zou Y, et al. Degradation trend feature generation improved rotating machines RUL prognosis method with limited run-to-failure data [J]. Measurement Science and Technology, 2023, 34(7): 075019. (仪器仪表领域高质量科技期刊分级T1,中科院3区/JCR Q1,IF 2.4,SCI: 000970995100001 , EI: 20231714021102)

    [7] Lai X, Zhang K*, Zheng Q, et al. A frequency-spatial hybrid attention mechanism improved tool wear state recognition method guided by structure and process parameters  [J]. Measurement, 2023, 214: 112833. (中科院2/JCR Q1IF 5.6,SCI: 000975644200001, EI:20231513863198.

    [6] Zou Y, Ding K, Shi K, Zhang K*, et al. Wear identification of end mills based on a feature-weighted convolutional neural network under unbalanced samples  [J]. Journal of Manufacturing Processes, 2023, 89: 64-76. (中科院1区Top/JCR Q1IF 6.2,SCI: 000968232400001, EI: 20230713582179

    [5] Huang F, Li X, Zhang K*, et al. A novel simulation-assisted transfer method for bearing unknown fault diagnosis[J]. Measurement Science and Technology, 2024. (仪器仪表领域高质量科技期刊分级T1,中科院3区/JCR Q1,IF 2.4,SCI:001275378100001,EI:20243116770093)

    [4] Wang L, Zhang K*, Zheng Q, et al. An undercarriage image driven anomaly detection method for metro vehicle based on adversarial memory enhancement [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023: 09544097231201519. (中科院4区/JCR Q2,IF 2,SCI:001066584700001,EI:20233814740127)

    [3] 秦国浩, 张楷*, 丁昆等. 动态宽卷积残差网络的轴承故障诊断方法 [J]. 中国机械工程, 2023, 34 (18): 2212-2221. (机械工程领域高质量科技期刊分级T2,EI:20234515039342)

    [2] Li Z, Zhang K*, Liu Y, et al. A Novel Remaining Useful Life Transfer Prediction Method of Rolling Bearings Based on Working Conditions Common Benchmark [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-9. (中科院2/JCR Q1IF 5.6, SCI:000709736100001,EI: 20211810302812

    [1] 张楷, 罗怡澜, 邹益胜等. 高速列车的样本关联改进故障诊断方法 [J]. 中国机械工程, 2018, 29 (02): 151-157. (机械工程领域高质量科技期刊分级T2,EI: 20184706123055)


    第一/通讯作者 会议论文

     [5] Li Z, Zhang K*, Lai X, et al. A Novel Remaining Useful Life Prediction Method for Milling Tool Based on Transfer Hierarchical Vision Transformer [C]//2023 IEEE Smart World Congress (SWC). IEEE, 2023: 1-6.EI:20241115733882)

     [4] Lai X, Zhang K*, Li Z, et al. Review of Interpretable Deep Learning in Fault Diagnosis and Its Application Prospectives in Condition Monitoring [C]//2023 IEEE Smart World Congress (SWC). IEEE, 2023: 1-6. (EI:20241115733672)

    [3] Lai X, Zhang K*, Li Z, et al. Tool Wear State Identification Based on Frequency Domain Denoising and Frequencies-Separation Attention Networks [C]//2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2023: 1020-1024. EI:20233114457306

    [2] Li Z, Zhang K*, Lai X, et al. A Remaining Useful Life Prediction Method for Rolling Bearing Based on Multi-channel Fusion Hierarchical Vision Transformer [C]//2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2023: 1025-1029. (EI:20233114457767)

    [1] 秦国浩,黄锋飞,张楷*,等. 噪声标签下残差神经网络损失改进的轴承故障诊断方法[C]// 中国振动工程学会转子动力学专业委员会. 第15届全国转子动力学学术大会摘要集. 2023: 1. DOI:10.26914/c.cnkihy.2023.111648.


    其他参与论文

    [24] Li Z, Xiao X, Zhou W, Zhang Ket al. Identification of tool wear status using multi-sensor signals and improved gated recurrent unit[J]. The International Journal of Advanced Manufacturing Technology, 2025, 137(3): 1249-1260.

    [23] Luo C, Zhao M, Fu X, Zhang Ket al. Thermodynamic simulation-assisted random forest: Towards explainable fault diagnosis of combustion chamber components of marine diesel engines[J]. Measurement, 2025: 117252.

    [22] Jiang J, Tao G, Liang H, Zhang Ket al. A structure information-assisted generalization network for fault diagnosis of out-of-round wheels of metro trains[J]. Measurement, 2025, 244: 116519.

    [21] Liu M, Zhang J, Qin S,  Zhang Ket al. A multi-target regression-based method for multiple orders remaining completion time prediction in discrete manufacturing workshops[J]. Measurement, 2024: 116231.

    [20] Fu H, Li Z, Xiao X, et al. Multi-Source Domain Generalization Tool Wear Prediction Based on Wide Convolution Weighted Antagonism[J]. Measurement Science and Technology, 2024.

    [19] Hao W, Chen C, Huang F, et al. Fault Diagnosis Method for Rolling Bearings Based on CVAE-GAN Under Limited Data[C]//International conference on the Efficiency and Performance Engineering Network. Cham: Springer Nature Switzerland, 2024: 144-154.

    [18] Yu X, Tang B, Zhang K. Fault diagnosis of wind turbine gearbox using a novel method of fast deep graph convolutional networks[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14. (ESI高被引SCI论文中科院2/JCR Q1IF 5.6

    [17] Huang H, Tang B, Luo J, et al. Residual gated dynamic sparse network for gearbox fault diagnosis using multisensor data[J]. IEEE Transactions on Industrial Informatics, 2021, 18(4): 2264-2273.

    [16] Zhou W, Xiao X, Li Z, Zhang K, et al. Prediction tool wear using improved deep extreme learning machines based on the sparrow search algorithm[J]. Measurement Science and Technology, 2024, 35(4): 046112.

    [15] 龙辉,陶功权,梁红琴,等. 地铁扁疤车轮通过钢轨焊缝区的轮轨垂向力特性分析 [J/OL]. 机械工程学报, 1-11[2024-04-30]. http://kns.cnki.net/kcms/detail/11.2187.TH.20240418.1523.036.html.

    [14] Zheng Q, Ding G, Zhang H, Zhang K, et al. An application-oriented digital twin framework and the multi-model fusion mechanism[J]. International Journal of Computer Integrated Manufacturing, 2023: 1-24.

    [13] Liu Y, Zou Y, Zhang K. Transfer Prediction Method of Bearing Remaining Useful Life Based on Deep Feature Evaluation under Different Working Conditions[J]. Sensors, 2023, 23(19): 8254.

    [12] Hao W, Li Z, Qin G, et al. A novel prediction method based on bi-channel hierarchical vision transformer for rolling bearings’ remaining useful life[J]. Processes, 2023, 11(4): 1153.

    [11]  梁红琴,姜进南,陶功权等. 基于轴箱垂向振动加速度的地铁车轮失圆状态诊断方法 [J]. 中南大学学报(自然科学版), 2024, 55 (01): 431-443.

    [10]  郝伟,丁昆,暴长春,等. 小样本下多尺度卷积关系网络的轴承故障诊断方法 [J]. 中国测试, 2024, 50 (03): 160-168.

    [9]  刘云飞,张楷,菅紫倩,等. 基于深度SVDD-CVAE的轴承自适应阈值故障检测 [J]. 机床与液压, 2024, 52 (06): 177-183+195.

    [8] 余浩帅, 汤宝平, 张楷. 小样本下混合自注意力原型网络的风电齿轮箱故障诊断方法 [J]. 中国机械工程, 2021, 32 (20): 2475-248(机械工程领域高质量科技期刊分级T1)

    [7] 张越宏,袁昭成,黄锋飞,等. 不均衡下分类器评价辅助GAN的轴承故障诊断方法 [J/OL]. 中国测试, 1-8[2024-04-30]. http://kns.cnki.net/kcms/detail/51.1714.TB.20240325.1128.004.html.

    [6] 周文军,肖晓萍,李自胜等. 基于改进长短期记忆网络的铣刀磨损量预测研究 [J]. 机床与液压, 2023, 51 (19): 203-210.

    [5] 张越宏,袁昭成,王大龙等. 基于Abaqus软件的电梯制动器仿真分析研究 [J]. 中国电梯, 2023, 34 (09): 13-15.

    [4] 简斌,肖晓萍,李自胜等. 机械设备多模态声源分离方法研究 [J]. 计算机技术与发展, 2023, 33 (06): 208-214.

    [3] 康顺,李自胜,肖晓萍等. 基于改进NSGA-Ⅱ的汽油机标定优化研究 [J]. 车用发动机, 2023, (01): 52-61.

    [2] 任建亭,汤宝平,雍彬等. 基于深度变分自编码网络融合SCADA数据的风电齿轮箱故障预警 [J]. 太阳能学报, 2021, 42 (04): 403-408. DOI:10.19912/j.0254-0096.tynxb.2018-1318.

    [1] 邓佳林,邹益胜,张继冬等. 液压减振器故障-参数集的知识表达及映射 [J]. 机械设计与制造, 2020, (07): 46-50. DOI:10.19356/j.cnki.1001-3997.2020.07.012.


    专利

    [12] 张楷,赖旭伟,郑庆等. 一种非连续特性约束的铣刀磨损监测单源域泛化方法[P]. 四川省: CN117620774A 2024-03-01.

    [11] 张楷,黄锋飞,郑庆等. 一种轨道列车转向架滚动轴承故障诊断方法[P]. 四川省: CN117150304A, 2023-12-01.

    [10] 张楷,郑庆,秦国浩等. 基于自适应对称损失的旋转机械噪声标签故障诊断方法[P]. 四川省: CN116502085A, 2023-07-28.

    [9] 张楷,赖旭伟,郑庆等. 一种基于多参数引导空间注意力机制的铣刀磨损监测方法[P]. 四川省: CN115971970B, 2024-03-26.(专利号:ZL 2022 1 1534665.1)

    [8] 张楷,丁国富,丁昆等. 一种基于伪标签传递式两阶段领域自适应的滚动轴承故障诊断方法[P]. 四川省: CN115876467A, 2023-03-31.

    [7] 张楷,赖旭伟,郑庆等. 一种基于频率注意力机制的铣刀磨损监测方法[P]. 四川省: CN115771061B, 2024-03-26.(专利号:ZL 2022 1 1534664.7)

    [6] 张越宏,袁昭成,王大龙等. 用于电梯制动器的紧急制动性能分析方法[P]. 四川省: CN117634266A, 2024-03-01.

    [5] 张越宏,袁昭成,郑庆等. 电梯曳引机轴承故障诊断方法[P]. 四川省: CN116484258A, 2023-07-25.

    [4] 郑庆,丁国富,张越宏等. 一种面向数字孪生应用的数据与模型融合方法[P]. 四川省: CN116204849A, 2023-06-02.

    [3] 丁国富,谢家翔,郑庆等. 一种复杂装备全生命周期信息物理融合方法[P]. 四川省: CN115906006A, 2023-04-04.

    [2] 张越宏,袁昭成,郑庆等. 制动力变化趋势监测装置及电梯杠杆鼓式制动器[P]. 四川省: CN217708438U, 2022-11-01.

    [1] 郑庆,丁国富,张海柱等. 一种基于模型融合的复杂产品数字孪生构建与应用方法[P]. 四川省: CN114611313A, 2022-06-10.


    论著之外的代表性研究成果和学术奖励

    1.  张楷, 重庆市优秀博士论文, 重庆市教育委员会, 2022

    2.  张楷, 重庆大学优秀博士论文, 重庆大学, 2022

    3.  张楷(10),詹天佑铁道科学技术奖创新团队奖,詹天佑科学技术发展基金会,2023

    4.  Double Horizontal Jibs Gin Pole on Ground,IEEE国际标准,制定中,IEEE P3413 Double Horizontal Jibs Gin Pole on Ground - Home


研究领域

    复杂装备智能运维相关研究

    刀具磨损监测


报考该导师研究生的方式

欢迎你报考张楷老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择张楷老师,你的所有申请信息将发送给张楷老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请张楷老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为张楷老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考张楷老师招收的专业和方向,进入复试后提交导师意向时选择张楷老师。

4、如果你有兴趣攻读张楷老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭