于超 教授

博士生导师

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

毕业院校:西南交通大学

所在单位:发展规划与学科建设处

报考该导师研究生的方式

欢迎你报考于超老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择于超老师,你的所有申请信息将发送给于超老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请于超老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为于超老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考于超老师招收的专业和方向,进入复试后提交导师意向时选择于超老师。

4、如果你有兴趣攻读于超老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

专著/教材列表:

1. Kang, G., Yu, C., Kan, Q., Thermo-mechanically coupled cyclic deformation and fatigue failure of NiTi shape memory alloys: Experiments, Simulations and Theories, 2023, Springer.

2. 康国政,于超,张旭,材料宏细观非弹性本构关系,科学出版社,2021年.

3. 康国政,刘宇杰,阚前华,于超,疲劳与断裂力学,科学出版社,2023年.


第一/通讯作者论文列表:

1.    Yu, C., Zhou, T., Kan, Q., Kang, G.*, & Fang, D. (2022). A two-scale thermo-mechanically coupled model for anomalous martensite transformation and elastocaloric switching effect of shape memory alloy. Journal of the Mechanics and Physics of Solids, 164, 104893.

2.     Yu, C., Kang, G., Sun, Q. *, & Fang, D. (2019). Modeling the martensite reorientation and resulting zero/negative thermal expansion of shape memory alloys. Journal of the Mechanics and Physics of Solids, 127, 295-331.

3.     Yu, C., Kang, G. *, & Kan, Q. (2015). A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals. Journal of the Mechanics and Physics of Solids, 82, 97-136.

4. Xu, B., Yu, C.*, Xiong, J., Hu, J., Kan, Q., Wang, C.*, Wang, Q., Kang, G.* (2025). Progress in phase field modeling of functional properties and fracture behavior of shape memory alloys. Progress in Materials Science, 148, 101364.

5. Xu, B., Su, A., Wang, Z., Yu, C.*, Kang, G. (2024). A multiscale constitutive model of magnesium-shape memory alloy composite. International Journal of Plasticity, 178, 104011.

6. Xu, B., Yu, C.*, Wang, C.,* Kan, Q., Wang, Q., Kang, G. (2024). Effect of pore on the deformation behaviors of NiTi shape memory alloys: A crystal-plasticity-based phase field modeling. International Journal of Plasticity, 175, 103931.

7.   Yu, C., Jiang H., Song D., Zhu Y., Kang, G. * (2023). A multi-scale diffusional-mechanically coupled model for super-elastic NiTi shape memory alloy wires in hydrogen-rich environment. International Journal of Plasticity, 165, 103614.

8.     Song, D., Yu, C.*, Zhang, Ch., & Kang, G. (2023). Superelasticity degradation of NiTi shape memory alloy in wide ranges of temperature and loading level: Experimental observation and micromechanical constitutive model. International Journal of Plasticity, 161, 103487.

9.     Yu, C., Kang, G. *, & Kan, Q. (2018). A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy. International Journal of Plasticity, 105, 99-127.

10.     Yu, C., Kang, G. *, & Chen, K. (2017). A hygro-thermo-mechanical coupled cyclic constitutive model for polymers with considering glass transition. International Journal of Plasticity, 89, 29-65.

11.     Yu, C., Kang, G. *, Kan, Q., & Zhu, Y. (2015). Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy: thermo-mechanical coupled and physical mechanism-based constitutive model. International Journal of Plasticity, 72, 60-90.

12.     Yu, C., Kang, G. *, Song, D., & Kan, Q. (2015). Effect of martensite reorientation and reorientation-induced plasticity on multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: new consideration in constitutive model. International Journal of Plasticity, 67, 69-101.

13.     Yu, C., Kang, G. *, & Kan, Q. (2014). Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation. International Journal of Plasticity, 54, 132-162.

14.  Yu, C., Kang, G. *, Kan, Q., & Song, D. (2013). A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys. International Journal of Plasticity, 44, 161-191.

15. Jiang, H., Fu, Z., Chen, K., Kan, Q., Yu, C.*, & Kang, G. (2024). Effect of hydrogen on the rate-dependent deformation of superelastic NiTi shape memory alloy springs: Experimental observation and thermo-diffusional-mechanically coupled model. International Journal of Solids and Structures, 293, 112743.

16. Kan, Q., Zhang, Y., Xu, Y., Kang, G., & Yu, C.* (2023). Tension-compression asymmetric functional degeneration of super-elastic NiTi shape memory alloy: Experimental observation and multiscale constitutive model. International Journal of Solids and Structures, 280, 112384.

17.  Zhang, Y., Kang, G., Miao, H., & Yu, C.* (2022). Cyclic degeneration of elastocaloric effect for NiTi shape memory alloy: Experimental observation and constitutive model. International Journal of Solids and Structures, 248, 111638.

18.  Yu, C., Chen, T., Yin, H., Kang, G. *, & Fang, D. (2020). Modeling the anisotropic elastocaloric effect of textured NiMnGa ferromagnetic shape memory alloys. International Journal of Solids and Structures, 191, 509-528.

19.  Zhou, T., Yu, C.*, Kang, G., Kan, Q., & Fang, D. (2020). A crystal plasticity based constitutive model accounting for R phase and two-step phase transition of polycrystalline NiTi shape memory alloys. International Journal of Solids and Structures, 193, 503-526.

20.  Yu, C., Kang, G. *, & Fang, D. (2019). A micromechanical constitutive model for unusual temperature-dependent deformation of Mg–NiTi composites. International Journal of Solids and Structures, 170, 38-52.

21.  Yu, C., Kang, G. *, & Kan, Q. (2014). Study on the rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy based on a new crystal plasticity constitutive model. International Journal of Solids and Structures, 51(25-26), 4386-4405.

22.  Zhou, T., Kang, G., Yin, H., & Yu, C.* (2020). Modeling the two-way shape memory and elastocaloric effects of bamboo-grained oligocrystalline shape memory alloy microwire. Acta Materialia, 198, 10-24.

23. Yu, C., Zhou, T., Song, D., Kan, Q.*, & Kang, G. (2023). A two-scale thermo-mechanically coupled constitutive model for grain size- and rate-dependent deformation of nano-crystalline NiTi shape memory alloy. International Journal of Engineering Science, 187, 103843.

24.  Yu, C., & Kang, G. * (2021). A multiscale magneto-thermo-mechanically coupled model for ultra-low-field induced magneto-elastocaloric effect in magnetostrictive-shape memory alloy composite system. International Journal of Engineering Science, 168, 103539.

25. Zhang, Y., Yu, C.*, Song, D., Zhu, Y., Kan, Q., & Kang, G. (2023). Solid-state cooling with high elastocaloric strength and low driving force via NiTi shape memory alloy helical springs: Experiment and theoretical model. Mechanics of Materials, 178, 104575.

26.  Yu, C., Kang, G. *, Rao, W., & Song, D. (2019). Modelling the stress-induced multi-step martensite transformation of single crystal NiMnGa ferromagnetic shape memory alloys. Mechanics of Materials, 134, 204-218.

27.  Yu, C., Kang, G. *, Xie, X., & Rao, W. (2018). A micromechanical model for the grain size dependent super-elasticity degeneration of NiTi shape memory alloys. Mechanics of Materials, 125, 35-51.

28.  Yu, C., Kang, G. *, Chen, K., & Lu, F. (2017). A thermo-mechanically coupled nonlinear viscoelastic–viscoplastic cyclic constitutive model for polymeric materials. Mechanics of Materials, 105, 1-15.

29.  Yu, C., Kang, G. *, Kan, Q., & Xu, X. (2017). Physical mechanism based crystal plasticity model of NiTi shape memory alloys addressing the thermo-mechanical cyclic degeneration of shape memory effect. Mechanics of Materials, 112, 1-17.

30.  Yu, C., Kang, G. *, & Kan, Q. (2014). A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of NiTi shape memory alloy: One-dimensional model. Mechanics of Materials, 78, 1-10.

31.  Yu, C., Kang, G. *, Lu, F., Zhu, Y., & Chen, K. (2016). Viscoelastic–viscoplastic cyclic deformation of polycarbonate polymer: experiment and constitutive model. Journal of Applied Mechanics, 83(4).

32. Kan, Q., Zhang, Y., Shi, W., Xu, Y., Yu, C.*, & Kang, G. (2024). Functional fatigue of superelasticity and elastocaloric effect for NiTi springs. International Journal of Mechanical Sciences, 265, 108889.

33. Kan, Q., Shi, W., Song, D., Yu, C.*, & Kang, G. (2023). A micromechanical constitutive model of high-temperature shape memory alloys. International Journal of Mechanical Sciences, 108328.

34.  Zhang, Y., Yu, C.*, Zhu, Y., Kan, Q., & Kang, G. (2022). Thermo-mechanically coupled deformation of pseudoelastic NiTi SMA helical spring. International Journal of Mechanical Sciences, 236, 107767.

35.  Dong, Y., Zhu, Y., Wu, F., & Yu, C.* (2022). A dual-scale elasto-viscoplastic constitutive model of metallic materials to describe thermo-mechanically coupled monotonic and cyclic deformations. International Journal of Mechanical Sciences, 224, 107332.

36.  Zhou, T., Yu, C.*, Kang, G., & Kan, Q. (2019). A new microplane model for non-proportionally multiaxial deformation of shape memory alloys addressing both the martensite transformation and reorientation. International Journal of Mechanical Sciences, 152, 63-80.

37.  Yu, C., Kang, G. *, & Kan, Q. (2018). An equivalent local constitutive model for grain size dependent deformation of NiTi polycrystalline shape memory alloys. International Journal of Mechanical Sciences, 138, 34-41.

38. Kan, Q., Qiu, B., Zhang, X., Yu, C.*, & Kang, G. (2023). Thermo-mechanically coupled functional fatigue of NiTi shape memory alloys under multiaxial cyclic loadings. International Journal of Fatigue, 172, 107657.

39. Zhu, Y.*, Gao, D., Shao, Y., Chen, H., Yu, C.*, & Wang, Q. (2023). A novel prefabricated auxetic honeycomb meta-structure based on mortise and tenon principle. Composite Structures, 117782.

40.  Zhang, Y., Kang, G., Miao, H., & Yu, C.* (2022). Semi-analytical and numerical models for magnetic field induced magneto-elastocaloric cooling in the multiferroic composite system. Composite Structures, 289, 115409.

41. Zhu, Z., Chai, G., Zhang, J., Li, X., Huang, Y., Zhang, J., Yu, C.*, Wang, Q*. (2024). Origin of prestrain-induced cyclic-strain hardening: Multi-scale experimental characterizations and simulations of 7075 aluminum alloy. Materials & Design, 238, 112711.

42.  Jiang, H. M., Yu, C.*, Kan, Q., Xu, B., Ma, C., & Kang, G. (2022). Effect of hydrogen on super-elastic behavior of NiTi shape memory alloy wires: Experimental observation and diffusional-mechanically coupled constitutive model. Journal of the Mechanical Behavior of Biomedical Materials, 105276.

43.  Song, D., Kang, G., Yu, C.*, Kan, Q., & Zhang, C. (2019). Torsional whole-life transformation ratchetting under pure-torsional and non-proportional multiaxial cyclic loadings of NiTi SMA at human-body temperature: Experimental observations and life-prediction model. Journal of the Mechanical Behavior of Biomedical Materials, 94, 267-278.

44.  Yu, C., Kang, G. *, & Kan, Q. (2014). Crystal plasticity based constitutive model for uniaxial ratchetting of polycrystalline magnesium alloy. Computational materials science, 84, 63-73.

45.  Yu, C., Kang, G. *, Song, D., & Kan, Q. (2012). Micromechanical constitutive model considering plasticity for super-elastic NiTi shape memory alloy. Computational Materials Science, 56, 1-5.

46.  Yu, C., Kang, G. *, & Fang, D. (2019). Mean-field homogenization of elasto-viscoplastic composites based on a new mapping-tangent linearization approach. Science China Technological Sciences, 62(5), 736-746.

47. Xu, B., Zhou, X., & Yu, C.* (2024). A multiscale analytical model for superelastic deformation of gradient nano-grained NiTi shape memory alloys. Acta Mechanica Sinica, in press.

48.  Yu, C.*, Kang, G., Song, D., & Xie, X. (2019). Three-dimensional constitutive model for magneto-mechanical deformation of NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mechanica Sinica, 35(3), 563-588.

49.  Yu, C., Kang, G. *, & Kan, Q. (2017). A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy. Acta Mechanica Sinica, 33(3), 619-634.

50. Jiang, H. M., Shi, W. X., Yu. C.*, & Kang, G. (2024). Effect of hydrogen on the transformation ratcheting of NiTi SMA wires: experiment and modeling. Acta Mechanica Solida Sinica, in press.

51.  Yu, C., Kang, G. *, & Fang, D. (2018). A thermo-magneto-mechanically coupled constitutive model of magnetic shape memory alloys. Acta Mechanica Solida Sinica, 31(5), 535-556.

52. 徐波,于超*,王宠*,阚前华,王清远,康国政 (2024).  基于相场模拟的应力辅助时效的NiTi形状记忆合金功能性能研究. 力学学报

53. 庞云浩,于超*,阚前华,康国政 (2024). 带孔形状记忆合金薄板弹热性能的实验和理论研究. 力学学报, 56. 2604-2615.

54. 姜晗,于超*,康国政 (2024). 富氢环境下镍钛形状记忆合金弹簧变形行为的实验和理论研究. 力学学报, 56. 97-103.