xinghuanlai Associate Professor

Supervisor of Doctorate Candidates

Supervisor of Master's Candidates

  

  • Education Level: PhD graduate

  • Professional Title: Associate Professor

  • Alma Mater: 英国诺丁汉大学

  • Supervisor of Doctorate Candidates

  • Supervisor of Master's Candidates

  • School/Department: 计算机与人工智能学院

  • Discipline:Communications and Information Systems
    Computer Science and Technology
  • MORE>
    Recommended Ph.D.Supervisor Recommended MA Supervisor
    Language: 中文

    Paper Publications

    Asynchronous Deep Reinforcement Learning for Data-Driven Task Offloading in MEC-Empowered Vehicular Networks

    DOI number:10.1109/INFOCOM42981.2021.9488886

    Journal:IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2021)

    Place of Publication:ELECTR NETWORK

    Key Words:Mobile edge computing,vehicular networks,task offloading,asynchronous deep reinforcement learning

    Abstract:Mobile edge computing (MEC) has been an effective paradigm to support real-time computation-intensive vehicular applications. However, due to highly dynamic vehicular topology, these existing centralized-based or distributed-based scheduling algorithms requiring high communication overhead, are not suitable for task offloading in vehicular networks. Therefore, we investigate a novel service scenario of MEC-based vehicular crowdsourcing, where each MEC server is an independent agent and responsible for making scheduling of processing traffic data sensed by crowdsourcing vehicles. On this basis, we formulate a data-driven task offloading problem by jointly optimizing offloading decision and bandwidth/computation resource allocation, and renting cost of heterogeneous servers, such as powerful vehicles, MEC servers and cloud, which is a mixed-integer programming problem and NP-hard. To reduce high time-complexity, we propose the solution in two stages. First, we design an asynchronous deep Q-learning to determine offloading decision, which achieves fast convergence by training the local DQN model at each agent in parallel and uploading for global model update asynchronously. Second, we decompose the remaining resource allocation problem into several independent subproblems and derive optimal analytic formula based on convex theory. Lastly, we build a simulation model and conduct comprehensive simulation, which demonstrates the superiority of the proposed algorithm.

    Co-author:Penglin Dai,Kaiwen Hu,Xiao Wu,Huanlai Xing,Zhaofei Yu

    Document Code:10.1109/INFOCOM42981.2021.9488886

    ISSN No.:0743-166X

    Translation or Not:no

    Date of Publication:2021-11-18

    Copyright © 2019 Southwest Jiaotong University.All Rights Reserved . ICP reserve 05026985
    Address:999 Xi'an Road, Pidu District, Chengdu, Sichuan, China
     Chuangongnet Anbei 510602000061
    Technical support: Office of Information Technology and network management
    Click:    MOBILE Version Login

    The Last Update Time : ..