Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
STDPG: A Spatio-Temporal Deterministic Policy Gradient Agent for Dynamic Routing in SDN
DOI number:10.1109/ICC40277.2020.9148789
Journal:ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC)
Place of Publication:ELECTR NETWORK
Key Words:convolutional neural networks,deep reinforcement learning,dynamic routing,long short-term memory,software-defined networking
Abstract:Dynamic routing in software-defined networking (SDN) can be viewed as a centralized decision-making problem. Most of the existing deep reinforcement learning (DRL) agents can address it, thanks to the deep neural network (DNN) incorporated. However, fully-connected feed-forward neural network (FFNN) is usually adopted, where spatial correlation and temporal variation of traffic flows are ignored. This drawback usually leads to significantly high computational complexity due to large number of training parameters. To overcome this problem, we propose a novel model-free framework for dynamic routing in SDN, which is referred to as spatio-temporal deterministic policy gradient (STDPG) agent. Both the actor and critic networks are based on identical DNN structure, where a combination of convolutional neural network (CNN) and long short-term memory network (LSTM) with temporal attention mechanism, CNN-LSTM-TAM, is devised. By efficiently exploiting spatial and temporal features, CNN-LSTM-TAM helps the STDPG agent learn better from the experience transitions. Furthermore, we employ the prioritized experience replay (PER) method to accelerate the convergence of model training. The experimental results show that STDPG can automatically adapt for current network environment and achieve robust convergence. Compared with a number state-of-the-art DRL agents, STDPG achieves better routing solutions in terms of the average end-to-end delay.
Co-author:Juan Chen,Zhiwen Xiao,Huanlai Xing*,Penglin Dai,Shouxi Luo,Muhammad Azhar Iqbal
Document Code:10.1109/ICC40277.2020.9148789
ISSN No.:1550-3607
Translation or Not:no
Date of Publication:2020-06-11
The Last Update Time : ..