[41] Jia, Lianghao; Jiang, Jinrui; Ren, Aobo; Wei, Zhengen; Xiang, Tao*; Zhou, Shaobing*.Ultra-fast cryogenic self-healing ionic hydrogel for flexible wearable bioelectronics. Chem. Eng. J. 2024, 495, 153734.
[40] Jia, Lianghao; Li, Yuanhong; Ren, Aobo; Xiang, Tao*; Zhou, Shaobing. Degradable and recyclable hydrogels for sustainable bioelectronics. ACS Appl. Mater. Interfaces 2024, 16, 32887-32905. (Invited Review)
[39] Guo, Qianru; Yin, Tianyu; Huang, Wei; Nan, Rui; Xiang, Tao*; Zhou, Shaobing*.Hybrid hydrogels for immunoregulation and pro-angiogenesis through mild heat stimulation to accelerate whole-process diabetic wound healing Adv. Healthc. Mater. 2024, 13, 2304536.
[38] Zhang, Haitao*; Jiang, Xinglin; Wu, Shanshan; Chu, Xiang; Xiang, Tao*.An environmentally-friendly and self-healable supercapacitor realized by NaCl penetrable polyampholyte conductive hydrogel. ACS Applied Energy Materials 2024, 7, 499-507.
[37] Xiang, Tao*; Guo, Qianru; Jia, Lianghao; Yin, Tianyu; Huang, Wei; Zhang, Xinyu; Zhou, Shaobing*. Multifunctional hydrogels for the healing of diabetic wounds, Adv. Healthc. Mater. 2024, 13, 2301885. (Invited Review)
[36] Song, Xiang; Jia, Lianghao; Wei, Zhengen; Xiang, Tao*; Zhou, Shaobing. Nature-inspired sustainable solar evaporators for seawater desalination. J. Mater. Chem. A 2024, 12, 613-633. (Invited Review)
[35] Tianyu Yin, Xinyu Zhang, Shuai Shao, Tao Xiang*, Shaobing Zhou*,Covalently crosslinked sodium alginate/poly(sodium p-styrenesulfonate) cryogels for selective removal of methylene blue, Carbohydr. Polym. 301 (2023) 120356.
[34] Shao, Zijian; Yin, Tianyu; Jiang, Jinbo; He, Yang; Xiang, Tao; Zhou, Shaobing. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing, Bioact. Mater. 2023, 20, 561-573. (ESI高被引,热点论文)
[33] Tao Xiang*, Jiao Wang, Lianghao Jia, Pan Wang, Shaobing Zhou*, Semicrystalline polymer networks with a swelling-enhanced water-triggered two-way shape-memory effect for programmable deformation and smart actuation, Polym. Chem. 13 (2022) 6614-6624.
[32] Lianghao Jia, Jinrui Jiang, Tao Xiang*, Shaobing Zhou, Multifunctional biomimetic microstructured surfaces for healthcare applications, Adv. Mater. Interfaces (2022) 2201270.
[31] Lianghao Jia, Shanshan Wu, Ruiting Yuan, Tao Xiang*, Shaobing Zhou*, Biomimetic Microstructured Antifatigue Fracture Hydrogel Sensor for Human Motion Detection with Enhanced Sensing Sensitivity, ACS Appl. Mater. Interfaces 14 (2022) 27371-27382.
[30] Zijian Shao, Shanshan Wu, Qian Zhang, Hui Xie, Tao Xiang*, Shaobing Zhou*, Salt-responsive polyampholyte-based hydrogel actuators with gradient porous structures, Polym. Chem. 12 (2021) 670-679.
[29] Bo Zhang, Lianghao Jia, Jinrui Jiang, Shanshan Wu, Tao Xiang*, Shaobing Zhou*, Biomimetic microstructured hydrogels with thermal-triggered switchable underwater adhesion and stable antiswelling property, ACS Appl. Mater. Interfaces 13 (2021) 36574-36586.
[28] Zhen Xiang, Chengzhen Chu, H. Xie, Tao Xiang*, Shaobing Zhou*, Multifunctional thermoplastic polyurea based on the synergy of dynamic disulfide bonds and hydrogen bond cross-Links, ACS Appl. Mater. Interfaces 13 (2021) 1463-1473.
[27] Shanshan Wu, Zijian Shao, H. Xie, Tao Xiang*, Shaobing Zhou*, Salt-mediated triple shape-memory ionic conductive polyampholyte hydrogel for wearable flexible electronics, J. Mater. Chem. A 9 (2021) 1048-1061. (ESI高被引论文)
[26] Tao Xiang, J.W. Hou, H. Xie, X. Liu, T. Gong, Shaobing Zhou*, Biomimetic micro/nano structures for biomedical applications, Nano Today, 35 (2020) 100980
[25] Chengzhen Chu, Zhen Xiang, Jiao Wang, H. Xie, Tao Xiang*, Shaobing Zhou*, A near-infrared light-triggered shape-memory polymer for long-time fluorescence imaging in deep tissues, J. Mater. Chem., B 8 (2020) 8061-8070.
[24] T. Tian, Jiao Wang, Shanshan Wu, Zijian Shao, Tao Xiang*, Shaobing Zhou*, A body temperature and water-induced shape memory hydrogel with excellent mechanical properties, Polym. Chem. 10 (2019) 3488-3496.
[23] L. Lu, T. Tian, Shanshan Wu, Tao Xiang*, Shaobing Zhou*, A pH-induced self-healable shape memory hydrogel with metal-coordination cross-links, Polym. Chem. 10 (2019) 1920-1929.
[22] Tao Xiang*, T. Lu, W.-F. Zhao, C.-S. Zhao, Ionic-Strength Responsive Zwitterionic Copolymer Hydrogels with Tunable Swelling and Adsorption Behaviors, Langmuir 35 (2019) 1146-1155.
[21] Tao Xiang*, T. Lu, W.-F. Zhao, C.-S. Zhao*, Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties, New J. Chem. 42 (2018) 5323-5333.
[20] D. Liu#, Tao Xiang#, T. Gong, T. Tian, X. Liu, Shaobing Zhou*, Bioinspired 3D Multilayered Shape Memory Scaffold with a Hierarchically Changeable Micropatterned Surface for Efficient Vascularization, ACS Appl. Mater. Interfaces 9 (2017) 19725-19735.
[19] R. Wang, Y. Xie, Tao Xiang*, S. Sun, C. Zhao*, Direct catechol conjugation of mussel-inspired biomacromolecule coatings to polymeric membranes with antifouling properties, anticoagulant activity and cytocompatibility, J. Mater. Chem., B 5 (2017) 3035-3046.
[18] Tao Xiang, T. Lu, Y. Xie, W.F. Zhao, S.D. Sun, C.S. Zhao*, Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry, Acta Biomater. 40 (2016) 162-171.
[17] Y. Xie, R. Wang, S. Li, Tao Xiang*, C.-S. Zhao*, A robust way to prepare blood-compatible and anti-fouling polyethersulfone membrane, Colloids and Surfaces B-Biointerfaces 146 (2016) 326-333.
[16] Tao Xiang, C.D. Luo, R. Wang, Z.Y. Han, S.D. Sun, C.S. Zhao*, Ionic-strength-sensitive polyethersulfone membrane with improved anti-fouling property modified by zwitterionic polymer via in situ cross-linked polymerization, J. Membr. Sci. 476 (2015) 234-242.
[15] Tao Xiang, T. Lu, R. Wang, C. Wang, S.D. Sun, H.B. He, C.S. Zhao*, Improved antifouling properties and blood compatibility of 3-methacryloxypropyl trimethoxysilane - based zwitterionic copolymer modified composite membranes via in situ post-crosslinking copolymerization, RSC Advances 5 (2015) 23229-23238.
[14] Tao Xiang, R. Wang, H. Qin, H. Xiang, B.H. Su, C.S. Zhao*, Excellent biocompatible polymeric membranes prepared via layer-by-layer self-assembly, J. Appl. Polym. Sci. 132 (2015) 41245.
[13] Wang, X. Jiang, A. He, Tao Xiang*, C.S. Zhao*, An in situ crosslinking approach towards chitosan-based semi-IPN hybrid particles for versatile adsorptions of toxins, RSC Advances 5 (2015) 51631-51641.
[12] J.Jiao Wang, M.B. Wu, Tao Xiang*, R. Wang, S.D. Sun, C.S. Zhao*, Antifouling and blood‐compatible poly (ether sulfone) membranes modified by zwitterionic copolymers via In situ crosslinked copolymerization, J. Appl. Polym. Sci. 132 (2015) 41585.
[11] Y. Xie, S.S. Li, X. Jiang, Tao Xiang*, R. Wang, C.S. Zhao*, Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility, J. Colloid Interface Sci. 443 (2015) 36-44.
[10] Tao Xiang, L.R. Wang, L. Ma, Z.Y. Han, R. Wang, C. Cheng, Y. Xia, H. Qin, C.S. Zhao*, From commodity polymers to functional polymers, Sci. Rep. 4 (2014) 4604.
[9] Tao Xiang, R. Wang, W.F. Zhao, C.S. Zhao*, Covalent deposition of zwitterionic polymer and citric acid by click chemistry-enabled layer-by-layer assembly for improving the blood compatibility of polysulfone membrane, Langmuir 30 (2014) 5115-5125.
[8] Tao Xiang, L.S. Zhang, R. Wang, Y. Xia, B.H. Su, C.S. Zhao*, Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP, J. Colloid Interface Sci. 432 (2014) 47-56.
[7] Tao Xiang, Y. Xie, R. Wang, M.B. Wu, S.D. Sun, C.S. Zhao*, Facile chemical modification of polysulfone membrane with improved hydrophilicity and blood compatibility, Mater. Lett. 137 (2014) 192-195.
[6] Tao Xiang, C. Cheng, C.S. Zhao, Heparin-mimicking polymer modified polyethersulfone membranes-a mini review, J. Membr. Sci. Sep. Technol. 3 (2014) 162-177.
[5] Z.Y. Han, C. Cheng, L.S. Zhang, C.D. Luo, C.X. Nie, J. Deng, Tao Xiang*, C.S. Zhao*, Toward robust pH-responsive and anti-fouling composite membranes via one-pot in-situ cross-linked copolymerization, Desalination 349 (2014) 80-93.
[4] Tao Xiang, W.W. Yue, R. Wang, S. Liang, S.D. Sun, C.S. Zhao*, Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility, Colloids Surf., B 110 (2013) 15-21.
[3] Tao Xiang, H. Fu, W.W. Yue, S.D. Sun, C.S. Zhao*, Preparation and characterization of poly (acrylonitrile-co-maleic anhydride) copolymer modified polyethersulfone membranes, Sep. Sci. Technol. 48 (2013) 1627-1635.
[2] Tao Xiang, M. Tang, Y.Q. Liu, H.J. Li, L.L. Li, W.Y. Cao, S.D. Sun, C.S. Zhao*, Preparation and characterization of modified polyethersulfone hollow fiber membranes by blending poly (styrene-alt-maleic anhydride), Desalination 295 (2012) 26-34.
[1] Tao Xiang, Q.H. Zhou, K. Li, L.L. Li, F.F. Su, B.S. Qian, C.S. Zhao*, Poly (acrylic acid-co-acrylonitrile) copolymer modified polyethersulfone hollow fiber membrane with pH-sensitivity, Sep. Sci. Technol. 45 (2010) 2017-2027.
欢迎你报考向韬老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择向韬老师,你的所有申请信息将发送给向韬老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请向韬老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为向韬老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考向韬老师招收的专业和方向,进入复试后提交导师意向时选择向韬老师。
4、如果你有兴趣攻读向韬老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。