王中宝 副教授

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:理学博士学位

办公地点:西南交通大学数学学院

在职信息:在岗

毕业院校:四川大学

所在单位:数学学院

报考该导师研究生的方式

欢迎你报考王中宝老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王中宝老师,你的所有申请信息将发送给王中宝老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王中宝老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王中宝老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王中宝老师招收的专业和方向,进入复试后提交导师意向时选择王中宝老师。

4、如果你有兴趣攻读王中宝老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭
当前位置: 中文主页 >> 科学研究
  • [1]Wang, Zhong BaoDing, Xie Ping: Existence and iterative algorithm of solutions for a system of generalized set-valued strongly nonlinear mixed variational-like inequality problems in Banach spacesJournal of Applied Mathematics and Computing2010331)209-225

    [2]Wang, Zhong Bao Ding, Xie Ping: (H(., .), eta)-accretive operators with an application for solving set-valued variational inclusions in Banach spacesComputers & Mathematics with Applications2010594):1559-1 567

    [3]Wang, Zhong BaoHuang, Nan Jing: Degree theory for a generalized set-valued variational inequality with an application in Banach spacesJournal of Global Optimization2011492):343-357

    [4]Wang, Zhong BaoHuang, Nan JingWen, Ching Feng: The existence results for optimal control problems governed by quasi-variational inequalities in reflexive Banach spacesTaiwanese Journal of Mathematics2012164):12 21-1243

    [5]Wang, Zhong BaoHuang, Nan Jing: The degree theory for set-valued compact perturbation of monotone-type mappings with an applicationApplicable Analysis2013923):616-635

    [6]Wang, Zhong BaoHuang, Nan Jing: Stability analysis for generalized f -projection operators with an applicationTaiwanese Journal of Mathematics2013175):1727-1750

    [7]Wang, Zhong Bao Huang, Nan Jing: Exceptional family of elements for a generalized set-valued variational inequality in Banach spacesOptimizat ion2014632):167-180

    [8]Zhong-bao Wang Ram U. Verma: A new system of generalized mixed variational inequalities in Banach spacesand its projection methodsAdvances in Nonlinear Variational Inequalities2015181):70-80

    [9]Wang Zhong Bao Chen Zi Li: Existence of solutions for generalized mixed variational inequalities in reflexive BanachspacesJournal of nonlinear science and applications201695):3299-3309

    [10]Guo-ji TangZhong-bao Wang, Nan-jing Huang: Existence of solutions for variational-like hemivariational inequalities involving lower semicontinuous mapsIn: H. Xu et al. (eds.), Optimization Methods, Theory and Applications, Springer-Verlag2015xx):67-84

    [11]Guo-ji Tang Xing WangZhong-bao Wang: Existence of variational quasi-hemivariational inequalities involving a set-valued operator and a nonlinear termOptimization Letters201591):75-90

    [12]Zhong-bao Wang, Guo-ji Tang and Hong-ling Zhang: Projection methods for a system of nonlinear mixed variational inequalities in Banach spaces,Journal of Function Spaces (2014) Article ID 606109

    [13]Guo-ji Tang, Zhong-bao Wang* and Hong-ling Zhang: On a class of variational-hemivariational inequalities involving upper semicontinuous set-valued mappings. Abstract and Applied Analysis, (2014) Article ID 896941

    [14]Zhong-bao Wang, Zi-li Chen, Zhang-you Chen, Si-sheng Yao: Lagrangian methods for optimal control problems governed by a mixed quasi-variational inequality, Optim Lett (2018) 12:1357–1371

    [15]Zhong-bao Wang, Zhang-you Chen, Yi-bin Xiao,Cong Zhang: A new projection-type method for solving multi-valued mixed variational inequalities without monotonicity, Applicable Analysis, 2020, VOL. 99, NO. 9, 1453–1466

    [16] Zhong-bao Wang, Yi-bin Xiao, Zhang-you Chen: Degree Theory for generalized mixed quasi-variational inequalities and its applications, Journal of Optimization Theory and Applications (2020) 187:43–64

    [17]Xue Chen, Zhong-bao Wang1, Zhang-you Chen: A new method for solving variational inequalities and fixed points problems of demi-contractive mappings in Hilbert spaces,Journal of Scientific Computing (2020) 85:18

    [18] Zhong-bao Wang, Xue Chen, Jiang Yi, Zhang-you Chen:Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities,Journal of Global Optimization (2022) 82:499–522

    [19]Zhong-bao Wang, Xin Long, Zhen-yin Lei, Zhang-you Chen: New self-adaptive methods with double inertial steps for solving splitting monotone variational inclusion problems with applications,Communications in Nonlinear Science and Numerical Simulation (2022) 114,106656

    [20] Zhong-bao Wang, Pongsakorn Sunthrayuth, Abubakar Adamu & Prasit Cholamjiak: Modified accelerated Bregman projection methods for solving quasi-monotone variational inequalities, Optimization(2023), DOI: 10.1080/02331934.2023.2187663 

     


  • 暂无内容
  • 暂无内容