王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Markov clustering ensemble

DOI码:10.1016/j.knosys.2022.109196

发表刊物:Knowledge-Based Systems

刊物所在地:NETHERLANDS

关键字:Machine learning; Unsupervised learning; Markov clustering ensemble model; Markov clustering ensemble algorithm

摘要:Clustering ensemble is an unsupervised ensemble learning method that is very important in machine learning, since it integrates multiple weak base clustering results to produce a strong consistency result. This paper proposes the Markov clustering ensemble (MCE) model to solve the weak stability and robustness of soft clustering ensemble. First, the base clustering algorithms are regarded as new features of the original datasets. Then, the results of the base clustering algorithms are the values of these features, which can break through the framework of consensus cluster ensemble. Second, as the base clustering results are discrete data, the maximum information coefficient is applied to measure their similarity. Accordingly, a graph-based cluster ensemble model can be constructed with row vectors as vertices and the similarity between row vectors as edges. Then, the Markov process can be applied to infer the graph-based cluster ensemble model; therefore, the MCE algorithm is designed according to the inference. To test the performance of the MCE algorithm, clustering algorithms and clustering ensemble algorithms are used to conduct comparative experiments on ten datasets. The experimental results show that the MCE algorithm outperforms the other algorithms in terms of accuracy and purity.

合写作者:Tianrui Li

第一作者:Luqing Wang

论文类型:SCI

通讯作者:Junwei Luo,Hongjun Wang

文献类型:J

期号:251

页面范围:109196

ISSN号:0950-7051

是否译文:

发表时间:2022-06-04

收录刊物:SCI