硕士生导师
个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
办公地点:犀浦3号教学楼31529
毕业院校:四川大学
学科:电子信息. 软件工程. 计算机应用技术
所在单位:计算机与人工智能学院
报考该导师研究生的方式
欢迎你报考王红军老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。
4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
Hierarchical Active Learning With Qualitative Feedback on Regions
所属单位:西南交通大学
发表刊物:IEEE Transactions on Human-Machine Systems
刊物所在地:UNITED STATES
摘要:Learning classification models in practice usually requires numerous labeled data for training. However, instance-based annotation can be inefficient for humans to perform. In this article, we propose and study a new type of human supervision that is fast to perform and useful for model learning. Instead of labeling individual instances, humans provide supervision to data regions, which are subspaces of the input data space, representing subpopulations of data. Since labeling now is performed on a region level, 0/1 labeling … Learning classification models in practice usually requires numerous labeled data for training. However, instance-based annotation can be inefficient for humans to perform. In this article, we propose and study a new type of human supervision that is fast to perform and useful for model learning. Instead of labeling individual instances, humans provide supervision to data regions , which are subspaces of the input data space, representing subpopulations of data. Since labeling now is performed on a region level, 0/1 labeling becomes imprecise. Thus, we design the region label to be a qualitative assessment of the class proportion, which coarsely preserves the labeling precision but is also easy for humans to do. To identify informative regions for labeling and learning, we further devise a hierarchical active learning process that recursively constructs a region hierarchy. This process is semisupervised in the sense that it is driven by both active learning strategies and human expertise, where humans can provide discriminative features. To evaluate our framework, we conducted extensive experiments on nine datasets as well as a real user study on a survival analysis of colorectal cancer patients. The results have clearly demonstrated the superiority of our region-based active learning framework against many instance-based active learning methods.
合写作者:Yazhou He,Yanbing Xue,Hongjun Wang,Tianrui Li
第一作者:Zhipeng Luo
论文类型:SCI
通讯作者:Milos Hauskrecht
文献类型:J
卷号:53
期号:3
页面范围:581-589
是否译文:否
发表时间:2023-03-11
收录刊物:SCI