王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hierarchical cluster ensemble model based on knowledge granulation

影响因子:8.139

DOI码:10.1016/j.knosys.2015.10.006

所属单位:西南交通大学

发表刊物:KNOWLEDGE-BASED SYSTEMS

刊物所在地:NETHERLANDS

关键字:Cluster ensemble Granular computing Rough sets

摘要:Cluster ensemble has been shown to be very effective in unsupervised classification learning by generating a large pool of different clustering solutions and then combining them into a final decision. However, the task of it becomes more difficult due to the inherent complexities among base cluster results, such as uncertainty, vagueness and overlapping. Granular computing is one of the fastest growing information-processing paradigms in the domain of computational intelligence and human-centric systems. As the core part of granular computing, the rough set theory dealing with inexact, uncertain, or vague information, has been widely applied in machine learning and knowledge discovery related areas in recent years. From these perspectives, in this paper, a hierarchical cluster ensemble model based on knowledge granulation is proposed with the attempt to provide a new way to deal with the cluster ensemble problem together with ensemble learning application of the knowledge granulation. A novel rough distance is introduced to measure the dissimilarity between base partitions and the notion of knowledge granulation is improved to measure the agglomeration degree of a given granule. Furthermore, a novel objective function for cluster ensembles is defined and the corresponding inferences are made. A hierarchical cluster ensemble algorithm based on knowledge granulation is designed. Experimental results on real-world data sets demonstrate the effectiveness for better cluster ensemble of the proposed method.

合写作者:Hongjun Wang, Hamido Fujita

第一作者:Jie Hu

论文类型:学术论文

通讯作者:李天瑞

论文编号:20155101701533

学科门类:工学

一级学科:计算机科学与技术

卷号:Volume 91

期号:January 2016

页面范围:Pages 179-188

ISSN号:0950-7051

是否译文:

发表时间:2015-10-16