王红军 副研究员

硕士生导师

个人信息Personal Information


学历:博士研究生毕业

学位:工学博士学位

办公地点:犀浦3号教学楼31529

毕业院校:四川大学

学科:电子信息. 软件工程. 计算机应用技术

所在单位:计算机与人工智能学院

报考该导师研究生的方式

欢迎你报考王红军老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择王红军老师,你的所有申请信息将发送给王红军老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请王红军老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为王红军老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考王红军老师招收的专业和方向,进入复试后提交导师意向时选择王红军老师。

4、如果你有兴趣攻读王红军老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Spectral co-clustering ensemble

影响因子:8.139

DOI码:10.1016/j.knosys.2015.03.027

所属单位:西南交通大学

发表刊物:KNOWLEDGE-BASED SYSTEMS

刊物所在地:NETHERLANDS

关键字:Co-clusteringEnsemble learningSpectral co-clustering ensembleSpectral algorithmMutual information

摘要:The goal of co-clustering is to simultaneously cluster the rows and columns of an input data matrix. It overcomes several limitations associated with traditional clustering methods by allowing automatic discovery of similarity based on a subset of attributes. However, different co-clustering models usually produce very distinct results since each algorithm has its own bias due to the optimization of different criteria. The idea of combining different co-clustering results emerged as an alternative approach for improving the performance of co-clustering algorithms. Similar to clustering ensembles, co-clustering ensembles provide a framework for combining multiple base co-clusterings of a dataset to generate a stable and robust consensus co-clustering result. In this paper, a novel co-clustering ensemble algorithm named spectral co-clustering ensemble (SCCE) is presented. SCCE performs ensemble tasks on base row clusters and column clusters of a dataset simultaneously, and obtains an optimization co-clustering result. Meanwhile, SCCE is a matrix decomposition based approach which can be formulated as a bipartite graph partition problem and solve it efficiently with the selected eigenvectors. To the best of our knowledge, this is the first work on using spectral algorithm for co-clustering ensemble. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed method. Our study also shows that SCCE has some favorable merits compared with many state of the art methods.

合写作者:李天瑞, Yan Yang

第一作者:Shudong Huang

论文类型:学术论文

通讯作者:Hongjun Wang

论文编号:20151600754270

学科门类:工学

一级学科:计算机科学与技术

卷号:Volume 84

期号:August 2015

页面范围:Pages 46-55

ISSN号:0950-7051

是否译文:

发表时间:2015-08-03