wanghongjun
Research Associate
Supervisor of Master's Candidates
- Master Tutor
- Education Level:PhD graduate
- Degree:Doctor of engineering
- Business Address:犀浦3号教学楼31529
- Professional Title:Research Associate
- Alma Mater:四川大学
- Supervisor of Master's Candidates
- School/Department:计算机与人工智能学院
- Discipline:Electronic Information
Software Engineering
Computer Application Technology
Contact Information
- PostalAddress:
- Email:
- Paper Publications
Hierarchical Active Learning With Qualitative Feedback on Regions
- Affiliation of Author(s):西南交通大学
- Journal:IEEE Transactions on Human-Machine Systems
- Place of Publication:UNITED STATES
- Abstract:Learning classification models in practice usually requires numerous labeled data for training. However, instance-based annotation can be inefficient for humans to perform. In this article, we propose and study a new type of human supervision that is fast to perform and useful for model learning. Instead of labeling individual instances, humans provide supervision to data regions, which are subspaces of the input data space, representing subpopulations of data. Since labeling now is performed on a region level, 0/1 labeling … Learning classification models in practice usually requires numerous labeled data for training. However, instance-based annotation can be inefficient for humans to perform. In this article, we propose and study a new type of human supervision that is fast to perform and useful for model learning. Instead of labeling individual instances, humans provide supervision to data regions , which are subspaces of the input data space, representing subpopulations of data. Since labeling now is performed on a region level, 0/1 labeling becomes imprecise. Thus, we design the region label to be a qualitative assessment of the class proportion, which coarsely preserves the labeling precision but is also easy for humans to do. To identify informative regions for labeling and learning, we further devise a hierarchical active learning process that recursively constructs a region hierarchy. This process is semisupervised in the sense that it is driven by both active learning strategies and human expertise, where humans can provide discriminative features. To evaluate our framework, we conducted extensive experiments on nine datasets as well as a real user study on a survival analysis of colorectal cancer patients. The results have clearly demonstrated the superiority of our region-based active learning framework against many instance-based active learning methods.
- Co-author:Yazhou He,Yanbing Xue,Hongjun Wang,Tianrui Li
- First Author:Zhipeng Luo
- Indexed by:SCI
- Correspondence Author:Milos Hauskrecht
- Document Type:J
- Volume:53
- Issue:3
- Page Number:581-589
- Translation or Not:no
- Date of Publication:2023-03-11
- Included Journals:SCI