主持或主研的科研及教学改革项目:
(1)国家自然科学青年基金项目,关于程度化格值一阶逻辑的若干关键问题研究,主持,批准号:61100046,2012.01-2014.12.
(2)四川省应用基础研究计划项目,智能信息处理的逻辑基础理论研究,2011.9-2014.08,主持,批准号:2011JY0092.
(3)中央高校基本科研业务费科技创新项目,主持,批准号:SWJTU12CX054,2012.1-2013.12.
(4)中国高等教育学会高等教育科学研究“十三五”教育科学规划一般课题:基于移动端的数学课程混合式教学模式研究,主持,批准号:16YB107.
(5)2016年教育部高教司产学合作协同育人项目:基于移动信息化的《高等数学》课程教学内容和课程体系改革,主持,批准号:201602018003.
(6)西南交通大学本科教育教学研究与改革项目,重大项目:移动互联时代公共数学课程改革与创新研究,主持,批准号:1501008.
(7)2016西南交通大学“翻转课堂”课程改革项目:高等数学.
(8)国家自然科学基金面上项目, 基于矛盾体分离的动态自动演绎推理研究, 批准号:61673320,2017.01-2020.12,主研(第二).
(9)教育部、国家外专局学校特色项, 模糊信息处理的关键数学基础问题研究,批准号:TS2015XNJT048,2015.9 -2018.8, 主持.
Main Research Papers:
*Lifting negations and implications on bounded subposets of a complete lattice. Fuzzy Sets and Systems, 2023, 466(30): 108442.
*A new type of fuzzy systems in terms of vague partitions. Journal of Intelligent & Fuzzy Systems, 2023 (44): 9545-9653.
*Interval type-2 fuzzy systems on the basis of vague partitions and their approximation properties. Computational & Applied Mathematics, 2024(43): DOI10.1007/s40314-024-02629-2
*The fuzzy system based on vague partitions and its application to path tracking control for autonomous vehicles. Journal of Intelligent & Fuzzy Systems, 2024 (46): 5869-5892.
*Rough set model based on axiomatic fuzzy set. Journal of Intelligent & Fuzzy Systems, 2023 (45): 1423-1436.
*关于模糊集合的公理化定义.数学的实践与认识, 2022, 52(3): 189-199.
*基于正则模糊划分的模糊系统及其逼近性质.计算机科学,2024, 51: 79-86
*Correction to: Redefinition of the concept of fuzzy set based on vague partition from the perspective of axiomatization. Soft Computing (2018) 22:2079
*Redefinition of the concept of fuzzy set based on vague partition from the perspective of axiomatization. Soft Comput (2018) 22:1777–1789
*Vague membership measure, Uncertainty Modelling in Knowledge Engineering and Decision Making, Proceedings of the 12th International FLINS Conference, 527-534, 2016
*模糊信息与模糊逻辑. 北京: 中国科技论文在线. [2016-05-20]. http: www.paper.edu.cn/releasepaper/content/201605-874.
*Vague partition, Proceedings of 2015 International Conference on Intelligent Systems and Knowledge Engineering, 83-88, DOI 10.1109/ISKE.2015.30
*Semantics of propositional fuzzy modal logic with evaluated syntax and its application to fuzzy decision implications, International Journal of Computational Intelligence Systems, 8(2015) 85-93.
*On lifting quasi-filters and strong lifting quasi-filters in MV-algebras, Journal of Intelligent & Fuzzy Systems 28 (2015) 2245–2255.
* 剩余格上的L滤子. 模糊数学与系统, 2014, 28: 1-6.
*Semantics of propositional fuzzy modal logic with evaluated syntax based on MV-algebras, Decision Making and Soft Computing, Proceedings of the 11th International FLINS Conference, 346-353, 2014.
*On the algebraic structure of binary lattice-valued fuzzy relations. Soft Computing, (2013) 17:411-420
* Syntax theory of finite lattice-valued propositional logic. Sci China Inf Sci, 2013, 56: 1-12
* Graded propositional fuzzy logic for approximate reasoning, The Journal of Fuzzy Mathematics, 20(1): 193-210, 2012
* Triangle norm based fuzzy logic based convex fuzzy sets. Fuzzy Sets and Systems 209 (2012) 1–13
* An algebraic analysis for binary intuitionistic L-fuzzy relations, Foundations and Applications of Intelligent Systems, Advances in Intelligent Systems and Computing, 213, 2014, 11-20.
* LIFTING QUASI-FILTERS OF LATTICE IMPLICATION ALGEBRAS, Proceeding of the 10th International FLINS Conference on Uncertainty Modeling in Knowledge Engineering and Decision Making, Istanbul, Turkey, 2012, 744-749
* Graded Intuitionistic Fuzzy Convexity with Application to Fuzzy Decision Making, 2011 2nd International Conference of Electrical and Electronics Engineering. Lecture Notes in Electrical Engineering, 2011,136: 709-716.
* Generalized Fuzzy Convexity with Application to Fuzzy Decision Making, 2011 International Conference on Computational Intelligence and Software Engineering, 2011, 9, 9-11, Vol 1: Fuzzy Systems
* 有限格值命题逻辑的语义理论, 中国科学F辑.2010 Vol. 40 (11): 1417-1427
* Semantic theory of finite lattice-valued propositional logic, SCIENCE CHINA Information Sciences, 2010, Volume 53, Number 10, Pages 2022-2031
* ON COMPACTNESS AND CONSISTENCY IN FINITE LATTICE-VALUED PROPOSITIONAL LOGIC, Lecture Notes in Computer Science, 2010, Volume 6077, Hybrid Artificial Intelligence Systems, Pages 328-334.
* Convexity of Fuzzy Sets from the Viewpoint of Fuzzy Logic, Proceedings of the 2010 IEEE IEEM, Macau, 7-10 December 2010, 2523-2526
* Lattice implication ordered semigroups, Information Science. 178(2): 403-413, 2008
* Method of Solution to A Finite Lattice Implication Algebraic Equation, The Journal of Fuzzy Mathematics, 16(1): 1-13, 2008.
* Fully implicational Triple I reasoning method on Linguistic truth-valued lattice implication algebra, Li Tianrui, Xu Yang, Ruan Da (Eds), Proceeding of the 2007 International Conference on Intelligent Systems and Knowledge Engineering (ISKE2007), October 15-16, 2007: 1508-1513, Sichuan Chengdu, Atlantis Press, Paris.
* Linguistic Truth Values Lattice Implication Algebras, Journal of Donghua University (Eng. Ed.) 23(6): 101-104, 2006.
* 关于一类有限格蕴涵代数方程的解法, 模糊系统与数学,20(6): 51-57, 2006
* 格蕴涵代数中的格蕴涵代数方程. 西南交通大学学报,40(6),2005, 842-845.
* The relations between lattice implication algebras and Brouwerian lattice, the 6th International FLINS Conference on Applied Computational Intelligence, 2004, 51-56. In Belgium.
暂无内容
暂无内容
欢迎你报考潘小东老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择潘小东老师,你的所有申请信息将发送给潘小东老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请潘小东老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为潘小东老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考潘小东老师招收的专业和方向,进入复试后提交导师意向时选择潘小东老师。
4、如果你有兴趣攻读潘小东老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。