(1) 结构振动与控制
(2) 工程结构非线性动力学
(3) 工程结构数值仿真
已在《Nonlinear Dynamics》、《Journal of Sound and Vibration》、《Mechanical Systems and Signal Processing》、 《International Journal of Mechanical Sciences》、 《Composites Part B: Engineering》、《Thin-Walled Structures》、《Composite Structures》、《 Aerospace Science and Technology》、《International Journal of Non-Linear Mechanics》、《Communications in Nonlinear Science and Numerical Simulation》、 《ASME Journal of Applied Mechanics》、《Applied Mathematical Modelling》、《力学学报》等期刊共计发表论文200余篇,其中SCI收录100余篇(含ESI论文4篇,热点论文3篇),总引用近3000余次。主要论文如下:
2023年
[216] Li ZW, Xie M, Li J, Li YH, Yang Y,Linear and nonlinear vibration of axially loaded Timoshenko beam with elastic supports: Effects of transition parameter,International Journal of Structural Stability and Dynamics, 2023, 2450067.
[215] Liu PP, Tang J, Li YH, Kun Z,Static and dynamic analysis of the postbuckling of axially moving spin beams,Mechanics of Advanced Materials and Structures,2023(online)
[214] Yan XS, Li YH,Size-dependent buckling behaviors of a rotating nanobeam using the integral form of Eringen’s nonlocal theory Mechanics of Advanced Materials and Structures, 2023(online)
[213] Wang L, Li YH, Xu Q, Zhao X, Buckling of a movable constrained laminated beam with variable-length in hygrothermal environment,International Journal of Non-Linear Mechanics, 2023, 156:104508.
[212] Qin Y, Lv HW, Li YH, Dong H,Nonlinear parametric resonances of a rotating composite thin-walled beam under aerodynamic force and hygrothermal environment,Engineering Structures, 2023, 292:116484.
[211] Zhao X, Meng SY, Zhu WD, Zhu YL, Li YH,A closed-form solution of forced vibration of a double-curved-beam system by means of the Green's function method,Journal of Sound and Vibration, 2023, 561: 117812.
[210] Zhao X, Tan M, Li YH, Shao YB,Vortex Induced Forced Vibration of Euler-Bernoulli Pipe-in-pipe System | Euler-Bernoulli 海洋立管涡致强迫振动响应研究,西南石油大学学报,2023, 45(4):133–142.
[209] Guo Y, Li JA, Zhu B, Li YH,Nonlinear dynamical model of hyperelastic pipes conveying fluid with finite deformation: roles of hyperelasticity and nonlinearity,Nonlinear Dynamics, 2023, 111(15): 13691–13708.
[208] Chang XP, Hong X, Qu C, Li YH,Stability and nonlinear vibration of carbon nanotubes-reinforced composite pipes conveying fluid,Ocean Engineering, 2023, 281, 114960.
[207] Chang XP, Song Q, Qu C, Li YH, Liu J,Axial-transverse coupled vortex-induced vibration characteristics of composite riser under gas-liquid two-phase internal flow,Ocean Engineering, 2023, 277, 114163.
[206] Zhou J, Chang XP, Li YH, Shao YB,基于同伦分析法的 FGM 输流管非线性频率分析,应用数学与力学,2023, 44(2):191–200.
[205] Zhu B, Guo Y, Chen B, Li YH, Nonlinear nonplanar dynamics of porous functionally graded pipes conveying fluid, Communications in Nonlinear Science and Numerical Simulation, 2023,117:106907.
[204] Yang Y, Li JA, Chen B, Dong YH, Li Y,Symmetric and asymmetric vibrations of rotating GPLRC annular plate,International Journal of Mechanical Sciences,2023,250:108282.
[203] Zhao X, Tan M, Zhu W, Shao Y, Li YH,Study of vortex-induced vibration of a pipe-in-pipe system by using a wake oscillator model, Journal of Environmental Engineering (United States),2023,149(4):04023007.
[202] Chen B, Yang B, Li ZW, Xu LW, Li YH,Exact closed-form solutions for free vibration of double-beam systemsinterconnected by elastic supports under axial forces,International Journal of Structural Stability and Dynamics,2023,23(3):2350035.
[201] Zhou J, Chang XP, Li YH, Xiong Z,Dynamic nonlinear analysis of functionally graded flow pipelines with defects based on different foundation layouts, Journal of Vibration Engineering and Technologies,2023(online).
2022年
[200] Chang XP, Zhou J, Li YH, Post-buckling characteristics of functionally graded fluid-conveying pipe with geometric defects on Pasternak foundation, Ocean Engineering,2022 266: 113056.
[199] Chang XP, Qu CJ, Song Q, Liu J, Li YH, Coupled cross-flow and in-line vibration characteristics of frequency-locking of marine composite riser subjected to gas-liquid multiphase internal flow, Ocean Engineering,2022,:113019
[198] Zhou J, Chang XP, Li YH, Nonlinear vibration analysis of functionally graded flow pipelines under generalized boundary conditions based on homotopy analysis,Acta Mechanica.2022,233(12):5447–5463.
[197] Peng XB, Xu J, Yang, EC, Li, YH, Yang J, Influence of the boundary relaxation on free vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections, Acta Mechanica,2022,233(10): 4161 – 4177.
[196] Peng XB, Xu J, Cheng Y, Zhang L, Yang J, Li YH, An analytical model for cure-induced deformation of composite laminates, Polymers, 2022,14:2903
[195] Li JA, Zhao X, Wang YJ, Li YH, Investigation on dynamic bifurcation buckling of a composite column impacted by a mass in hygrothermal environment, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 2022.
[194] Chen B, Xu Q,Zhu B, Yang YK, Li YH, Buckling and postbuckling behaviors of symmetric/asymmetric double-beam systems, International Journal of Mechanical Science,2022, 235:107712.
[193] Chen B, Yang B, Li ZW, Xu LW and Li YH, Exact Closed-form solutions for free vibration of double-beam systems interconnected by elastic supports under axial forces, International Journal of Structural Stability and Dynamics,2022: 2350035 DOI: 10.1142/S0219455423500359
[192]Chen B, Lin BC, Yang YK, Zhao X and Li YH, Analytical solutions of nonlocal forced vibration of a functionally graded double-nanobeam system interconnected by a viscoelastic layer, Online: 2022-07-08 | DOI: https://doi.org/10.1515/zna-2022-0059.
[191]Chang XP, Fan JM, Qu CJ, Li YH,Coupling vibration of composite pipe-in-pipe structure subjected to gas-liquid mixed transport by means of green’s functions,Mechanics of Advanced Materials and Structures,2022
[190] Chang XP, Fan JM, Han D, Chen B, Li YH, Stability and modal conversion phenomenon of pipe-in-pipe structures with arbitrary boundary conditions by means of Green's functions,.International Journal of Structural Stability and Dynamics, 2022, 22(7):2250034
[189] Zhao X, Li SY, Zhu WD, Li YH,Nonlinear forced vibration analysis of a multi-cracked Euler-Bernoulli curved beam with inclusion of damping,Mechanical Systems and Signal Processing,2022,180:109147
[188] Guo Y, Li JA, Zhu B, Li YH, Flow-induced instability and bifurcation in cantilevered composite double-pipe systems, Ocean Engineering, 2022,258(15):111825
[187] Zhou J, Chang XP, Xiong ZJ, Li YH, Stability and nonlinear vibration analysis of fluid-conveying composite pipes with elastic boundary conditions, Thin-Walled Structures, 2022,179:109597
[186] Li ZW, Lin BC, Chen B, Zhao X, Li YH, Free vibration, buckling and dynamical Stability of Timoshenko micro/nano-beam supported on Winkler-Pasternak foundation under a follower axial load, International Journal of Structural Stability and Dynamics,2022, 2250113
[185] Zhao X, Zhu WD, Li YH, Closed form solutions of bending-torsion coupled forced vibrations of a piezoelectric energy harvester under a fluid vortex, Journal of Vibration and Acoustics, Transactions of the ASME, 2022,144(2):021010
[184] 陈波,李映辉,李翔宇,袁江宏,含阻尼效应的黏弹性杆稳态响应的解析解,力学与实践,2022(online).
[183] 陈波,李映辉,李翔宇,关于伽辽金法的一点注记, 力学与实践,2022(online).
[182] Zhao X , Zhu WD, Li YH, Li M, Li XY, Review, classification, and extension of classical soil-structure interaction models based on different superstructures and soils, Thin-Walled Structures, 2022,173:108936
[181] Yang YK, Luo Q, Li JA, Dong YH, Chen B, Li YH, Symmetric and asymmetric thermo-induced buckling and postbuckling of rotating GPLRC annular plates rested on elastic foundation, Engineering Structures, 2022, 259(15):114110
[180] Li ZW, Chen B, Lin BC, Zhao X, Li YH, Analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler–Pasternak foundation, European Physical Journal Plus,2022,137:153
[179] Lin BC, Zhu B, Chen B, Han J, Li YH, Nonlinear primary resonance behaviors of rotating FG-CNTRC beams with geometric imperfections, Aerospace Science and Technology,2022, 121:107333
[178] Fan JM, Chang XP, Han DZ, Li YH, Vibration characteristics of the drill string subjected to spinning motion and multiple stabilizers by means of Green's functions, Engineering Analysis with Boundary Elements,2022,135:233-257.
[177] Li JA, Wang TJ , Liu X, Chen B, Xu Q, Wang CM , Li YH, Double-beam modeling and experiments of resonance behaviors of AFM-based nanowires, International Journal of Mechanical Science,2022,213:106867
[176] Guo Y, Zhu B, Yang B, Li YH, Flow-induced buckling and post-buckling vibration characteristics of composite pipes in thermal environment, Ocean Engineering,2022, 243: 110267.
[175] Zhao X, Li SY, Li YH, Zhu WD, Green’s Functions for the forced vibration analysis of multi-cracked Euler-Bernoulli curved beam with the inclusion of damping effects, Lecture Notes in Electrical Engineering,2022, 799 : 597–614.
[174] Guo Y, Zhu B, Li YH, Nonlinear dynamics of fluid-conveying composite pipes subjected to time-varying axial tension in sub- and super-critical regimes, Applied Mathematical Modelling,2022, 101: 632–653.
[173] Li M, Chen XC, Chang XP, Qin Y, Li YH, General analytical solution for vibrations of pipes with arbitrary discontinuities and generalized boundary condition on Pasternak foundation, Mechanical Systems and Signal Processing,2022, 162:107910.
2021年
[172] 赵翔,李思谊,李映辉, 含阻尼多裂纹Euler–Bernoulli曲梁强迫振动的Green函数解, 力学与实践,2021,43(6): 896-904.
[171] 李翔宇,袁江宏,沈火明, 李映辉, 均质圆盘热传导问题的新解法,力学与实践,2021,43(6): 973-975.
[170] 张博,胥奇,李映辉, 不同作动器布局和时滞下柔性悬臂梁振动控制研究, 动力学与控制学报,19(6):41-45.
[169] Zhang XL, Chen XC, Li M, Li YH, Xu J, Thermal post-buckling analyses of magneto-electro-elastic laminated beams via generalized differential quadrature method, Aerospace Science and Technology,2021, 2021, 119:107179.
[168] Peng XB, Xu J, Cheng Y, Li YH, Yang J, The effect of curing deformation on the vibration behavior of laminated composite beams, Composite Structures,2021, 277:114642.
[167] 赵翔,李思谊,李映辉, 电振动能量俘获的弯曲结构损伤监测研究, 力学学报,2021, 53(11):3035–3044.
[166] Xu J, Yang ZC, Yang J, Li YH, Free vibration analysis of rotating FG-CNT reinforced composite beams in thermal environments with general boundary conditions, Aerospace Science and Technology,2021, 118:107030.
[165] Tang J, Yang Y, Li Y, Cao D, A 6-DOF micro-vibration isolation platform based on the quasi-zero-stiffness isolator, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2021, 2021, 235(22):6019–6035.
[164] Wang L, Yang J, Li YH, Nonlinear vibration of a deploying laminated Rayleigh beam with a spinning motion in hygrothermal environment, Engineering with Computers,2021, 37(4):3825–3841.
[163] Zhao X, Wang CF, Zhu WD, Li YH, Wan XS, Coupled thermoelastic nonlocal forced vibration of an axially moving micro/nano-beam, International Journal of Mechanical Sciences,2021, 206:106600.
[162] Lin B, Chen B, Li Y, Yang J, Vibration characteristics and stable region of a parabolic FGM thin-walled beam with axial and spinning motion, Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences,2021, 76(9):787–798.
[161] Chen B, Lin BC, Li YH, Tang H, Exact solutions of steady-state dynamic responses of a laminated composite double-beam system interconnected by a viscoelastic layer in hygrothermal environments, Composite Structures,2021, 268:113939.
[160] Lin BC, Chen B, Zhu B, Li JA, Li YH, Dynamic stability analysis for rotating pre-twisted FG-CNTRC beams with geometric imperfections restrained by an elastic root in thermal environment, Thin-Walled Structures,2021, 164:107902.
[159] Xu J, Yang ZC, Yang J, Li YH, Influence of the boundary relaxation on the free vibration of rotating composite laminated Timoshenko beams, Composite Structures,2021, 266:113690.
[158] Chen B., Lin BC, Zhao X, Yang YK, Li YH, Closed-form solutions for forced vibrations of a cracked double-beam system interconnected by a viscoelastic layer resting on Winkler–Pasternak elastic foundation, Thin-Walled Structures,2021, 163:107688.
[157] Yang YK, Chen B, Lin WQ, Li Y, Dong Y,Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation, Aerospace Science and Technology,2021, 110:106495.
[156] Li L, Wu JQ, Zhu W, Wang L, Jing LW, Miao GH, Li YH, A nonlinear dynamical model for rotating composite thin-walled beams subjected to hygrothermal effects, Composite Structures,2021, 256:112839.
[155] Chang XP, Fan JM, Han D, Chen B, Li YH, Stability and modal conversion phenomenon of pipe-in-pipe structures with arbitrary boundary conditions by means of green's functions, International Journal of Structural Stability and Dynamics,2021, 2021:2250034.
[154] Chang XP, Fan J, Yang W, Li YH, In-line and cross-flow coupling vibration response characteristics of a marine viscoelastic riser subjected to two-phase internal flow,Shock and Vibration, 2021, 2021:7866802.
[153] Zhu B, Chen XC, Guo Y, Li YH, Static and dynamic characteristics of the post-buckling of fluid-conveying porous functionally graded pipes with geometric imperfections, International Journal of Mechanical Sciences, 2021, 189:105947.
[152] Gao XJ, True H, Li YH,Sensitivity analysis of the critical speed in a railway bogie system with uncertain parameters,Vehicle System Dynamics, 2021, 59(2):224–244.
2020年
[151] 王翰儒, 刘谋凯, 韩健,肖新标,李映辉, 高速列车120 km/h快速过站时站台及候车厅噪声特性预测分析, 机械,2020,47(12):16-21.
[150] 黄伟宽,陈波,李映辉,联轴器中连杆在离心场下的横向振动特性, 噪声与振动控制,2020,40(3):68-72.
[149] 高学军,李映辉,转向架临界速度的不确定性研究, 动力学与控制学报,2020,18(3):56-61.
[148] 尹自超,李明,陈波, 李映辉, 雾化器转轴振动特性研究, 动力学与控制学报,2020,19(1):47-54.
[147] Li M, Xu Q, Chen XC, Zhang XL, Li YH, Modeling and modal analysis of non-uniform multi-span oil-conveying pipes with elastic foundations and attachments,Applied Mathematical Modelling, 2020, 88:661–675.
[146] Zhu B, Xu Q, Li M, Li YH,Nonlinear free and forced vibrations of porous functionally graded pipes conveying fluid and resting on nonlinear elastic foundation,Composite Structures, 2020, 252: 112672.
[145] Guo Y, Zhu B, Zhao X, Chen B, Li YH,Dynamic characteristics and stability of pipe-in-pipe system conveying two-phase flow in thermal environment,Applied Ocean Research, 2020, 103: 102333.
[144] Zhao X, Zhu WD, Li YH,Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions,Journal of Sound and Vibration, 2020, 481:115407.(ESI论文、热点论文)
[143] Li JA , Cai ZY, Wang TJ, Wang CM, Liu X, Li YH, A modified method for elastic properties of nanowires based on surface effect, Nanotechnology, 2020, 31(35): 355701.
[142] Dong YH, Li YH, Li XY, Yang J, Active control of dynamic behaviors of functionally graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers, Applied Mathematical Modelling, 2020, 82:252–270.
[141] Zhang XL, Xu Q, Zhao X, Li YH, Yang J, Nonlinear analyses of magneto-electro-elastic laminated beams in thermal environments, Composite Structures, 2020, 234:111524.
[140] Du CC, Li YH, Parametric stability and complex dynamical behavior of functionally graded rectangular thin plates subjected to in-plane inertial disturbance, Composite Structures,2020, 234(15):111728.
[139] Zhao X, Chen B, Li YH, Zhu WD, Nkiegaing FJ, Shao YB, Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green''s functions, Journal of Sound and Vibration, 2020, 464:115001. (ESI论文、热点论文)
[138] 廖晗; 姜吕锋; 李恒达; 杨兴昌; 李映辉, 四类变截面悬臂梁在侧向三角形载荷下的挠度,力学与实践,2020,42(5): 594 – 597.
[137]Lin B, Chen B, Li YH,Linear and nonlinear frequency analyses for the rotating diaphragm of the coupling, Mechanics Based Design of Structures and Machines, 2020(In Press).
[136] Yang YK, Dong YH, Li YH, Buckling of piezoelectric sandwich microplates with arbitrary in-plane BCs rested on foundation: effect of hygro-thermo-electro-elastic field, European Physical Journal Plus, 2020, 135(1): 61.
[135] Dong YH, Li XY, Gao K, Li YH, Yang J, Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment, Nonlinear Dynamics, 2020, 99(2): 981–1000.
2019年
[134] 曾维逵,谢腾飞,蒋建军,钞欣,李映辉,杨杰, 航空薄壁弧形结构件喷丸强化变形预测, 力学季刊,2020,40(3):577-583.
[133] Chang XP, Li X, Yang L, Li YH, Vibration characteristics of the stepped drill string subjected to gas-structure interaction and spinning motion, Journal of Sound and Vibration,2019, 450:251-275.
[132] Zhao X, Iegaink FJN, Zhu WD, Li YH, Coupled thermo-electro-elastic forced vibrations of piezoelectric laminated beams by means of Green’s functions, International Journal of Mechanical Sciences, 2019, 156: 355-369.
[131] Lin BC, Qin Y, Li YH, Yang J, The deflection of rotating composite tapered beams with an elastically restrained root in hygrothermal environment,Zeitschrift für Naturforschung A-A Journal of Physical Sciences, Online: 2019-05-29 | DOI: https://doi.org/10.1515/zna-2019-0028.
[130] Chen XC, Zhang XL, Lu YX, Li YH, Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams, International Journal of Mechanical Sciences, 2019, 151: 424-443.(ESI高引论文)
[129] Chen X, Lu Y, Zhu B, Zhang XL, Li YH. Nonlinear resonant behaviors of bi-directional functionally graded material microbeams: One-/two-parameter bifurcation analyses, Composite Structures, 2019, 223: 110896.
[128] Chen B, Zhao X, Li YH, Guo Y. Forced vibration analysis of multi-cracked Timoshenko beam with the inclusion of damping by virtue of Green's functions, Applied Acoustics, 2019, 155 (1): 477-491.
[127] Zhu B, Chen XC, Dong YH, Li YH. Stability analysis of cantilever carbon nanotubes subjected to partially distributed tangential force and viscoelastic foundation, Applied Mathematical Modelling, 2019, 73: 190-209.
[126] Dong YH, Zhu B, Wang Y, He LW, Li YH, Yang J. Analytical prediction of the impact response of grapheme reinforced spinning cylindrical shells under axial and thermal loads, Applied Mathematical Modelling, 2019, 71: 331-348.
[125] Li X, Li YH, Xie TF. Vibration characteristics of a rotating composite laminated cylindrical shell in subsonic air flow and hygrothermal environment, International Journal of Mechanical Sciences, 2019, 150: 356-368.
[124] Chen XC, Lu YX, Li YH, Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium, Applied Mathematical Modelling, 2019, 67: 430-448.
[123] Lin BC, Xie TF, Xu M, et.al, Natural frequencies and dynamic responses of rotating composite non-uniform beams with an elastically root in hygrothermal environment, Composite Structures, 2019, 209: 968-980.
[122] Wang L, Xu M, Li YH. Vibration analysis of deploying laminated beams with generalized boundary conditions in hygrothermal environment, Composite Structures, 2019, 207: 665–676.
[121] Zhang XL, Chen XC, Yang EC, Li HF, Liu JB, Li YH. Closed-form solutions for vibrations of a magneto-electro-elastic beam with variable cross section by means of Green’s functions, Journal of Intelligent Material Systems and Structures, 2019, 30(1): 82–99.
2018年
[120] 张云飞,杨鄂川,李映辉,变截面粘弹性旋转梁非线性参数振动研究, 动力学与控制学报,2018,16(5):418-423.
[119] 汪永军,张渲铃,李映辉, 复合材料细长柱受冲击荷载动力屈曲研究, 动力学与控制学报,2018,16(4):302-308.
[118] Zhao X, Li XY, Li YH, Axisymmetric analytical solutions for a heterogeneous multi-ferroic circular plate subjected to electric loading, Mechanics of Advanced Materials and Structures, 2018, 25(10): 795-804
[117] Qin Y, Wang L, Li YH. Coupled vibration characteristics of a rotating composite thin-walled beam subjected to aerodynamic force in hygrothermal environment, International Journal of Mechanical Sciences, 2018, 140: 260-270.
[116] Dong YH, He LW, Wang L, Li YH, Yang J, Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study, Aerospace Science and Technology, 2018, 82-83: 466–478.(热点论文、ESI高引论文)
[115] Dong YH, Zhu B, Wang Y, Li YH, Yang J, Nonlinear free vibration of graphene reinforced cylindrical shells: Effects of spinning motion and axial load, Journal of Sound and Vibration, 2018, 437: 79–96.
[114] Dong YH, Li YH, Chen D, Yang J, Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion, Composites Part B: Engineering, 2018, 437: 1–13.
[113] Li X, Xu Q, Li YH, Parametric instability of a rotating axially loaded FG cylindrical thin shell under both axial disturbances and thermal effects, Zeitschrift für Naturforschung A-A Journal of Physical Sciences, 2018, online.
[112] Li X, Du C C, Li YH, Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment, Applied Mathematical Modelling, 2018, 59: 393-409.
[111] Li X, Qin Y, Li YH, Zhao X. The coupled vibration characteristics of a spinning and axially moving composite thin-walled beam, Mechanics of Advanced Materials and Structures, 2018, 25(9): 722-731.
[110] Zhu B, Dong YH, LI YH, Nonlinear dynamics of a viscoelastic sandwich beam with parametric excitations and internal resonance, Nonlinear Dynamics, 2018, 1-38.
[109] Li M, Zhao X, Li X, Chang XP, Li YH. Stability analysis of oil-conveying pipes on two-parameter foundations with generalized boundary condition by means of Green’s functions, Engineering Structures, 2018, 173:300-12.
[108] Chen XC, Li YH, Size-dependent post-buckling behaviors of geometrically imperfect microbeams, Mechanics Research Communications, 2018, 88: 25-33 .
[107] Li YH, Wang L, Yang EC, Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads, International Journal of Non-Linear Mechanics, 2018, 101: 56-67 .
[106] Li YH, Dong YH, Qin Y, Lv HW, Nonlinear forced vibration and stability of an axially moving viscoelastic sandwich beam, International Journal of Mechanical Sciences, 2018, 138: 131-145 .
[105] Lv HW, Li L, Li YH, Non-linearly parametric resonances of an axially moving viscoelastic sandwich beam with time-dependent velocity, Applied Mathematical Modelling, 2018, 53: 83-105 .
[104] Li X, Du CC, Li YH, Parametric instability of a functionally graded cylindrical thin shell subjected to both axial disturbance and thermal environment, Thin-Walled Structures, 2018, 123: 25-35 .
2017年
[103] 杨鄂川,李映辉,赵翔,秦营, 含旋转运动效应裂纹梁横向振动特性的研究, 应用力学学报,2017,34(6):1160-1165.
[102] Wang L, Dong YH, Li YH, Vibration analysis of a thermo-mechanically coupled large-scale welded wall based on an equivalent model, Applied Mathematical Modelling, 2017, 50: 347-360 .
[101] Zhao X, Li XY, Li YH, Axisymmetric analytical solutions for a heterogeneous multi-ferroic circular plate subjected to electric loading, Mechanics of Advanced Materials and Structures, 2017, 1-10.
[100] Zhao X, Hu QJ, Crossley W, Du CC, Li YH. Analytical solutions for the coupled thermoelastic vibrations of the cracked Euler-Bernoulli beams by means of Green's functions. International Journal of Mechanical Sciences, 2017, 37-53: 128-129.
[99] Li X, Qin Y, Li YH, Zhao X. The coupled vibration characteristics of a spinning and axially moving composite thin-walled beam, Mechanics of Advanced Materials and Structures, 2017, 1-10.
[98] Zhao X, Yang EC, Li YH, W Crossley, Closed-form solutions for forced vibrations of piezoelectric energy harvesters by means of Green’s functions, Journal of Intelligent Material Systems and Structures, 2017,28: 1-16.
[97] Qin Y, Li YH, Influences of hygrothermal environment and installation mode on vibration characteristics of a rotating laminated composite beam, Mechanical Systems and Signal Processing, 2017, 91(1): 23-40.
[96] Dong YH, Li YH, A unified nonlinear analytical solution of bending, buckling and vibration for the temperature-dependent FG rectangular plates subjected to thermal load, Composite Structures, 2017, 159: 689-701.
[95] Dong YH, Zhang YF, Li YH. An analytical formulation for postbuckling and buckling vibration of micro-scale laminated composite beams considering hygrothermal effect. Composite Structures, 2017, 170: 11-25.
2016年
[94] 秦营, 李映辉, 风机塔筒结构横向振动特性的快速计算方法, 力学季刊, 2016, 37(3): 565-571.
[93] 李骁, 李映辉, 赵华, 风机塔筒结构横向振动特性的快速计算方法, 力学季刊, 2016, 37(2): 266-273.
[92] 张康康, 李亮, 罗杰, 李映辉, 湿热环境下复合材料风力机叶片气弹稳定性, 动力学与控制学报, 2016, 14(4): 348-353.
[91] 杨樟世, 秦营, 李映辉, 冲击荷载作用下轴向运动层合板非线性动力学响应, 噪声与振动控制, 2016, 36(4): 21-23+37.
[90] 杨鄂川, 秦营, 赵翔, 李映辉. 含轴向运动效应的裂纹梁横向振动频率研究, 力学季刊, 2016, 37(1): 74-80.
[89] 马艳龙, 李映辉. 湿热环境下复合材料薄壁梁振动特性研究, 振动与冲击, 2016, 35(15): 154-160+183.
[88] Gao XJ, H True, Li YH, Lateral dynamic features of a railway vehicle, Proceedings of the Institution of Mechanical Engineers - Part F: Journal of Rail and Rapid Transit, 2016, 230(3): 909-923.
[87] Zhao X, Zhao YR, Gao XZ, Li XY, Li YH, Green's functions for the forced vibrations of cracked Euler-Bernoulli beams, Mechanical Systems and Signal Processing, 2016, 68-69: 155-175.
[86] Li JJ, Yang EC, Liu WJ, Li YH, Coupling modeling and analysis of a wind energy converter, Advances in Mechanical Engineering, 2016, 8(6): 1-10.
[85] Li L, Zhang XL, Li YH, Analysis of coupled vibration characteristics of wind turbine blade based on Green's functions, Acta Mechanica Solida Sinica, 2016, 29(6): 620-630.
[84] Li X, Li YH, Qin Y, Free vibration characteristics of a spinning composite thin-walled beam under hygrothermal environment, International Journal of Mechanical Sciences, 2016, 97(1): 253-265.
[83] Li L, Li YH, Jiang BK, Liu QK, Effect of balance weight on dynamic characteristics of a rotating wind turbine blade, Journal of Engineering Mathematics, 2016, 97(1): 49-65.
[82] Qin Y, Li X, Yang EC, Li YH, Flapwise free vibration characteristics of a rotating composite thin-walled beam under aerodynamic force and hygrothermal environment, Composite Structures, 2016, 153: 490-503.
2015年
[81] Zhao X, Yang EC, Li YH, Analytical solutions for the coupled thermoelastic vibrations of Timoshenko beams by means of Green's functions, International Journal of Mechanical Sciences, 2015, 100: 50-67.
[80] Yang EC, Zhao X, Li YH. Free Vibration Analysis for Cracked FGM Beams by Means of a Continuous Beam Model. Shock & Vibration, 2015, 2015(4).
[79] 刘文俊, 李映辉. 湿热环境下复合材料纤维筒抗扭力学性能研究, 应用数学和力学, 2015, 36(S1): 58-65.
[78] 李亮, 李映辉, 杨鄂川, 风力机叶片挥舞—摆振气弹稳定性分析, 噪声与振动控制, 2015, 35(5): 30-34.
[77] 高学军, 李映辉, 关庆华, 车辆系统的多个蛇行运动, 振动与冲击, 2015, 34(11): 200-205.
[76] 王金梅, 李映辉, 沿轴向飞行粘弹性夹层梁热弹耦合振动响应分析, 动力学与控制学报, 2015, 13(5): 348-354.
[75] Li L, Li YH, Lv HW, Yang EC, Nonlinear aeroelastic structural dynamics of wind turbine blades, Journal of Vibration Engineering & Technologies, 2015, 3(4): 473-495.
2014年
[74] 蒋宝坤, 张渲铃, 李映辉, 湿热环境对旋转复合材料梁摆振特性的影响, 复合材料学报, 2014, 32(2): 579-585.
[73] 吕海炜, 李映辉, 李亮, 徐江, 轴向运动软夹层梁横向振动分析, 振动与冲击, 2014, 33(2): 41-46+51.
[72] Li XY, Zhao X, Li YH, Green's functions of the forced vibration of Timoshenko beams with damping effect, Journal of Sound and Vibration, 2014, 333(6): 1781-1795.
[71] Li L, Li YH, Liu QK, Lv HW, A mathematical model for horizontal axis wind turbine blades, Applied Mathematical Modelling, 2014, 38(11-12): 2695-2715.
[70] Jiang BK, Xu J, Li YH, Flapwise vibration analysis of a rotating composite beam under hygrothermal environment, Composite Structures, 2014, 117: 201-211.
[69] Lv HW, Li YH, Li L, Liu QK, Transverse vibration of viscoelastic sandwich beam with time-dependent axial tension and axially varying moving velocity, Applied Mathematical Modelling, 2014, 38(9-10): 2558-2585.
[68] 廖明建, 李映辉, 径向压力作用下夹层圆板自由振动理论解, 噪声与振动控制, 2014, 34(4): 11-14.
[67] 杜长城, 李映辉, 金学松, 热环境中功能梯度圆柱壳的内共振非线性模态, 振动与冲击, 2014, 33(6): 161-164+178.
[66] 李骁, 马艳龙, 李映辉, 框架结构多目标优化方法, 应用数学和力学, 2014, 35(S): 284-289.
[65] 赵翔, 李映辉. 旋转圆盘上可变摆长的单摆的分岔问题分析, 动力学与控制学报, 2014, 12(4): 321-326.
[64] Du CC, Li YH, Nonlinear internal resonance of functionally graded cylindrical shells using the Hamiltonian dynamics, Acta Mechanica Solida Sinica, 2014, 27(6): 635-647.
[63] Li L, Li YH, Liu QK, Lv HW, Flapwise non-linear dynamics of wind turbine blades with both external and internal resonances, International Journal of Non-Linear Mechanics, 2014, 61: 1-14.
[62] Du CC, Li YH, Jin XS, Nonlinear forced vibration of functionally graded cylindrical thin shells, Thin-Walled Structures, 2014, 78: 26-36.
2013年
[61] Li YH, Li L, Liu QK, Lv HW, Dynamic characteristics of lag vibration of a wind turbine blade, Acta Mechanica Solida Sinica, 2013, 26(6): 592-602.
[60] 廖明建, 李映辉, 黏弹性夹层环形薄板自由振动的理论解, 力学与实践, 2013, 35(5): 42-46.
[59] 杜长城, 李映辉, 功能梯度简支矩形板的非线性动力响应, 固体力学学报, 2013, 34(4): 361-366.
[58] 杜长城, 李映辉, 功能梯度圆柱壳非线性振动中的模态相互作用, 振动工程学报, 2013, 26(5): 647-653.
[57] 吕海炜, 李映辉, 刘启宽, 李亮, 轴向运动粘弹性夹层梁的横向振动, 动力学与控制学报,2013, 11(4): 314-319.
[56] 杨鄂川, 李映辉, 崔灿, 基于等效刚度法的裂纹梁振动特性分析, 西南大学学报(自然科学版), 2013, 35(4): 145-150.
[55] 高学军, 李映辉, 乐源, 转向架稳态曲线运行的混沌行为, 振动工程学报, 2013, 26(2): 192-198.
[54] 秦营, 刘启宽, 李亮, 李映辉, 风力机叶片非线性摆振响应及稳定性分析, 力学季刊, 2013, 34(1): 41-48.
[53] 王金梅, 李映辉, 轴向运动粘弹性夹层梁热力耦合振动频率分析, 振动与冲击, 2013, 32(14): 209-214.
[52] 高学军, 李映辉, 乐源, 非线性轮轨接触关系下转向架系统对称/不对称分岔分析, 机械工程学报, 2013, 49(8): 129-135.
[51] 廖明建, 李映辉, 粘弹性夹层圆板自由振动的理论解, 动力学与控制学报, 2013, 11(4): 336-342.
[50] 吕海炜, 李映辉, 李中华, 李亮, 超音速气流下粘弹性夹层壁板颤振非线性分析, 航天器与工程, 2013, 30(1): 40-48.
[49] 王金梅, 王潘, 李映辉, 含部分粘弹性夹层轴向运动梁的振动分析, 西南交通大学学报, 2013, 48: 160-164.
[48] 王金梅, 李映辉, 李亮, 旋转粘弹性夹层梁非线性自由振动特性研究, 动力学与控制学报, 2013, 11(3): 241-245.
[47] Gao XJ, Li YH, Yue Y, H True, Symmetric/asymmetric bifurcation behaviours of a bogie system, Journal of Sound and Vibration, 2013, 332(4): 936-951.
[46] Du CC, Li YH, Nonlinear resonance behavior of functionally graded cylindrical shells in thermal environments, Composite Structures, 2013, 102: 164-174.
2012年
[45] 高学军, 李映辉, 乐源, 对称轮轨系统的“合成分岔图”法, 动力学与控制学报, 2012, 10(3): 244-251.
[44] Li L, Xu XH, Zhang MX, Li YH, A study of the strong topologies on finite dimensional probabilistic normed spaces, International Journal of Computation and Applied Mathematics, 2012, 7(4): 431-448.
[43] 廖明建, 李映辉, 黏弹性夹层圆板的轴对称自由振动特性, 四川大学学报(工程科学版), 2012, 44(2): 68-71.
[42] 蒋宝坤, 李映辉, 旋转黏弹性夹层梁振动特性及响应研究, 四川大学学报(工程科学版), 2012, 44(2): 167-170.
[41] Gao XJ, Li YH, Yue Y, The "resultant bifurcation diagram" method and its application to bifurcation behaviors of a symmetric railway bogie system, Nonlinear Dynamics, 2012, 70(1): 363-380.
[40] 李中华, 李映辉, 轴向运动黏弹性夹层板的多模态耦合横向振动, 复合材料学报, 2012, 29(3): 219-225.
[39] 姬永强, 李映辉, 聂飞, 弹载数据存储模块抗高过载防护技术研究, 振动与冲击, 2012, 31(18): 104-106.
[38] 崔灿, 蒋晗, 李映辉, 变截面梁横向振动特性半解析法, 振动与冲击, 2012, 31(14): 85-88.
[37] 李亮, 李映辉, 刘启宽, 风力机叶片非线性挥舞分析, 固体力学学报, 2012, 33(1): 98-102.
[36] 刘启宽, 李亮, 张志军, 李映辉, 风力机叶片大挠度挥舞振动特性分析, 动力学与控制学报, 2012, 10(2): 171-176.
[35] 崔灿, 李映辉, 变截面铁木辛柯梁振动特性快速计算方法, 动力学与控制学报, 2012, 10(2): 258-262.
[34] 李映辉, 李中华, 超音速下粘弹性夹层壁板颤振分析, 力学季刊, 2012, 33(3): 449-455.
[33] Li L, Li YH, Lv HW, Liu QK, Flapwise dynamic response of a wind turbine blade in super-harmonic resonance, Journal of Sound and Vibration, 2012, 331(17): 4025-4044.
[32] 高学军, 李映辉, 乐源, 延续算法在简单轨道客车系统分岔中的应用, 振动与冲击, 2012, 31(20): 177~182.
2000年~2011年
[31] Huang ZH, Zhang QQ, Du CC, Li YH, Nonlinear vibration of a viscoelastic beam subjectedto both axial forces and transverse magnetic field, Advances in Vibration Engineering, 2011, 10(2): 167-176.
[30] Li YH, Wang YN, Li L, Nonlinear dynamic behaviors of a thermo-mechanical coupling viscoelastic plate, Advances in Vibration Engineering, 2011, 10(4): 353-369.
[29] 李亮, 吕海炜, 李映辉, 刘启宽, 风力机叶片挥舞振动特性分析, 力学季刊, 2011, 32(4): 584-589.
[28] Gao XJ, Li YH, Gao Q, Lateral bifurcation behavior of a four-axle railway passenger car, Journal of Applied Mechanics, 2010, 77: 1~8.
[27] 杜长城, 李映辉, 功能梯度矩形板的非线性自由振动, 力学季刊, 2010, 31(2): 250-255.
[26] 杜长城, 李映辉, 功能梯度薄壁圆柱壳的自由振动, 动力学与控制学报, 2010, 8(3): 219-223.
[25] 高学军, 李映辉, 高庆, 高速客车横向稳定性及分岔研究, 力学季刊, 2009, 30(4): 632-637.
[24] 黄志华, 刘平, 杜长城, 李映辉, 形状记忆合金薄板的分叉与激变, 力学季刊, 2009, 30(1): 71-76.
[23] 王燕楠, 李映辉, 邓一三, 含热传导效应粘弹性板耦合非线性动力分析模型, 西华师范大学学报(自然科学版), 2008, 29(2): 117-121.
[22] 李映辉, 王燕楠, 邓一三, 粘弹性板热机耦合非线性振动(Ⅰ)——动力学模型, 四川大学学报(工程科学版), 2008, 40(5): 7-12.
[21] 高学军, 李映辉, 高庆, 高速客车蛇行运动稳定性与分岔研究, 动力学与控制学报, 2008, 6(3): 202-207.
[20] 杜长城, 王俊翔, 陈杰富, 李映辉, 锅炉弯管缠绕式冷弯成形工艺及其回弹的数值模拟, 四川大学学报(工程科学版), 2008, 40(6): 75-79.
[19] 李映辉, 杜长城, 高庆, 变温环境下粘弹性梁的混沌运动, 西南交通大学学报, 2007, 42(6): 685-690.
[18] 张清泉, 李映辉, 姚进, 变速粘弹性传送带非线性动力稳定性与分岔, 四川大学学报(工程科学版), 2006, 38(2): 43-59.
[17] 李映辉, 杜长城, 张清泉, 高庆, 变速粘弹性传送带混沌运动, 四川大学学报(工程科学版), 2006, 38(3): 1-5.
[16] 李映辉, 张清泉, 形状记忆合金梁动力稳定性, 西南交通大学学报, 2005, 40(4): 453-456.
[15] 张清泉, 李映辉, 姚进, 形状记忆合金梁动力稳定性及混沌运动, 四川大学学报(工程科学版), 2004, 36(5): 30-34.
[14] Li YH, Gao Q, Nonlinear random stability of viscoelastic cable with small curvature, Applied Mathematics and Mechanics(English Edition), 2003, 24(8): 970-978.
[13] 李映辉, 高庆, 小曲率粘弹性索非线性随机稳定性分析, 应用数学和力学, 2003, 24(8): 854-864.
[12] Li YH, Gao Q, Yin XG, Nonlinear dynamic response and active vibration control of the viscoelastic cable with small sag, Applied Mathematics and Mechanics(English Edition), 2003, 24(5): 596-604.
[11] Li YH, Gao Q, Jian KL, Yin XG, Dynamic responses of viscoelastic axially moving belt, Applied Mathematics and Mechanics(English Edition), 2003, 24(11): 1348-1354.
[10] 李映辉, 高庆, 殷学纲, 小垂度粘弹性索非线性响应及振动主动控制, 应用数学和力学, 2003, 24(5): 529-536.
[9] 李映辉, 高庆, 蹇开林, 殷学纲, 粘弹性运动带动力响应分析, 应用数学和力学, 2003, 24(22): 1191-1196.
[8] Li YH, Gao Q, The probability stability of a viscoelastic plates, Acta Mechanica Solida Sinica, 2002, 15(2): 182-188.
[7] 李映辉, 高庆, 轴向运动小垂度索动力响应, 西南交通大学学报, 2002, 37(2): 117-120.
[6] Li YH, Jian KL, Gao Q, Yin XG, Nonlinear vibration analysis of viscoelastic cable with small sag, Acta Mechanica Solida Sinica, 2001, 14(4): 317-322.
[5] Li YH, Jian KL, Gao Q, Yin XG, Forced wave propagation in viscoelastic cable with small sag, Acta Mechanica Solida Sinica, 2001, 14(2): 147-154.
[4] Li YH, Peng RQ, Gao Q, The stochastic stability of a viscoelastic cable with small sag, Journal of Southwest Jiao tong University, 2001, 9(1): 59-66.
[3] 李映辉, 高庆, 殷学纲, 小垂度粘弹性索动力稳定性, 西南交通大学学报(自然科学版), 2001, 36(6): 609-611.
[2] Li B, Li YH, Yin GX, Dynamic modeling and simulation of flexible cable with large sag, Applied Mathematics and Mechanics(English Edition), 2000, 21(6): 707-714.
[1] 李映辉,张蓓,殷学纲, 小垂度索振动主动控制及其不可控运动研究, 振动工程学报, 2000, 13(2): 296-301.
暂无内容
目前承担的科研项目有:
(1)国家自然科学基金面上项目:离心环境中双稳态复合材料薄壁结构静动力学特性及稳定性研究(12272323)
(2)国家自然科学基金面上项目:轴向运动复合材料自旋薄壁细长结构动力学特性及稳定性研究(11872319)
(3)四川省自然科学基金项目:极端环境下复合材料风电叶片振动特性及稳定性研究(2022NSFSC0275)
(4) 横向项目:2MW及以上连杆式风电联轴器仿真分析
(5) 横向项目:防爆型特种装备铁路运输自备车噪音仿真分析计算
(6) 横向项目:3.2MW直驱型风电罩壳结构校核与优化
(7) 横向项目:7.0MW直驱型风电罩壳结构降本设计
(8) 横向项目:7.0MW直驱型风电罩壳结构校核与优化
完成的科研项目有:
======基金类项目======
(1) XX预研基金项目:粘弹性阻尼减振结构优化设计平台
(2) XX预研基金项目:考虑温度、频率效应的聚合物粘弹阻尼材料本构行为研究
(3) 四川省应用基础项目: 结构振动主动控制系统时滞效应研究
(4) 国家重点实验室开放基金项目:热粘弹性结构非线性动力学行为研究
(5) 国家重点实验室开放基金项目:热粘弹性结构动力屈曲及混沌行为研究
(6) 博士后科研基金项目:小波理论及其在结构健康监测中的应用
(7) 国家重点实验室开放基金项目: 阻尼夹层结构减振效果预测的数值实验系统
(8) 国家重点实验室开放基金项目:粘弹性结构动力分析及其随机稳定性研究
(9) 国家自然科学基金项目:表面涂层的疲劳磨损失效机理与数值仿真
(10) XX预研基金项目:大尺寸金刚石厚膜制备中断裂破坏分析研究
(11) XX预研基金项目:大尺寸金刚石厚膜残余应力分析研究
(12)国家自然科学基金项目:高速轴向飞行粘弹性阻尼夹层结构热机耦合振动特性及其稳定性研究(11072204)
(13)中央高校基本科研业务费专项:高速列车系统中的一些非线性动力学行为研究
(14)四川省应用基础基金项目:风机叶片大幅振动非线性数学模型及其解的稳定性研究
(15)国家青年科学基金项目:铁道车辆系统横向运动对称/不对称分岔行为与控制
(16)国家自然科学基金项目:复杂环境下超细长复合材料旋转结构的振动特性及稳定性研究(11372257)
======锅炉行业项目======
(1) 超临界W火焰锅炉下炉膛载荷分布研究
(2) 锅炉弯管成型工艺中的力学问题及其数值模拟研究
(3) 气化炉外壳分析设计计算
======风力发电行业项目======
(1) 大型复合材料风机叶片疲劳、颤振、稳定性等力学问题研究
(2) 2.5MW 风电叶片结构计算及专用程序开发
(3) 1.5MW 风电叶片疲劳强度计算
(4) 1.5MW 风电叶片强度与变形计算
(5) 1.5MW 风电叶片连接螺栓特性研究
(6) 1.0MW 风电叶片结构计算
(7) 2.0MW 风电叶片截面特性、疲劳强度、连接螺栓特性分析
(8) 2.0MW 复合材料风电叶片结构计算
(9) 2.0MW 风力发电机联轴器仿真计算
(10) 2.0MW 风力机塔架结构力学特性计算分析
(11) 5.0MW 叶片模具钢机构计算分析
(12) 5.5MW复合材料风机机舱罩结构计算及优化
(13) 3.2MW复合材料风电叶片结构计算
(14) 2.0MW机舱罩壳结构计算与优化
======石油行业项目======
(1) 吊卡结构强度与变形计算分析
(2) 吊卡结构疲劳寿命计算分析
(3) 卡瓦结构强度与变形分析
(4) 球阀强度及密封性能研究
(5) 震击器螺扣强度及疲劳寿命研究
(6) 滑键强度及变形分析
======其它行业项目======
(1) 笔记本跌落问题的数值模拟研究
(2) 波纹管冲击实验、加速度实验、振动实验的数值仿真研究
(3) 板坯连铸工艺的模拟研究
(4) 橡胶密封件密封性能研究
(5) 船用齿轮箱强度、刚度计算及其优化设计
欢迎你报考李映辉老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择李映辉老师,你的所有申请信息将发送给李映辉老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请李映辉老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为李映辉老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考李映辉老师招收的专业和方向,进入复试后提交导师意向时选择李映辉老师。
4、如果你有兴趣攻读李映辉老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。