李翔宇

教授

博士生导师 硕士生导师

学历:博士研究生毕业

办公地点:西南交通大学三号教学楼30203

毕业院校:浙江大学

所在单位:力学与航空航天学院

其他联系方式:

通讯/办公地址:

办公室电话:

移动电话:

邮箱:

科学研究

当前位置: 中文主页 >> 科学研究
论文成果

    近5年内,作者在《Proceedings of the National Academy of Sciences》,《Advanced Material》,《Journal of the Mechanics and Physics of Solids》,《Advanced Functional Materials》,《Composites Science and Technology》《Computer Methods in Applied Mechanics and Engineering》等著名刊物上发表SCI论文100余篇,他引达1000余次, ESI 高引论文 1 篇,获批发明专利 11项,实用新型专利 13项。
     

     主要论文目录

    2024      

    [1]Qian Z, Li P, Wang B, Zhang YH, Qian ZH, Wu XW, Li XY, Kuznetsova Iren. A novel wave tomography method for defect reconstruction with various arrays. Structural Health Monitoring 2024;23:25–39. https://doi.org/10.1177/14759217231162264.

     

    [2]Zhao Y, Li XY, Guo JW. Singular jets during the impingement of compound drops upon lyophilic surfaces. Physics of Fluids 2024;36:022120. https://doi.org/10.1063/5.0192140.

     

    [3]Yang MS, Li XY*, Kang GZ, Chen WQ. Understanding macroscopic thermal conduction in composites reinforced with 2D nanosheets. Composites Science and Technology 2024;248:110450. https://doi.org/10.1016/j.compscitech.2024.110450.

     

    [4]Wu F, Zhang SB, Li C, Li XY. Modulating adhesion strength in multi-ferroic composite materials: Insights from adhesive contact with arbitrary profile indenters. International Journal of Solids and Structures 2024;292:112721. https://doi.org/10.1016/j.ijsolstr.2024.112721.

     

    [5]Tan Y, Peng F, Liu C, Peng DM, Li XY*. Fourth-order phase-field modeling for brittle fracture in piezoelectric materials. Applied Mathematics and Mechanics 2024;45:837–56. https://doi.org/10.1007/s10483-024-3118-9.

     

    [6]Wang YB, Zhao JS, He YX, Yang MS, Chu JL, Yuan JH,Li XY*, Chen WQ. Contact stiffness of the multi-indenter contact interface. Journal of the Mechanics and Physics of Solids 2024;188:105659. https://doi.org/10.1016/j.jmps.2024.105659.

     

    [7]Li B, Wang SL, Liu C, Xu YG, Deng WL, Yuan JH, Zhao JJ, Yang WQ, Li XY*. Bending induced polarization charges in non-polar porous polymer for stroke rehabilitation. Chemical Engineering Journal 2024;493:152684. https://doi.org/10.1016/j.cej.2024.152684.

     

    [8]Liu C, Tan Y, Zhang Y, Liu ZY, Shimada T, Li XY*, Wang J. Phase-field analysis for brittle fracture in ferroelectric materials with flexoelectric effect. Computer Methods in Applied Mechanics and Engineering 2024;430:117242. https://doi.org/10.1016/j.cma.2024.117242.

     

    [9]Yang MS, Li XY*, Chen WQ. A robust lattice Boltzmann scheme for high-throughput predicting effective thermal conductivity of reinforced composites. Applied Energy 2024;371:123726. https://doi.org/10.1016/j.apenergy.2024.123726.

     

    [10]Yuan XB, Zhao PZ, Fan QQ, Wang YS, Li XY*. Theoretical and numerical analysis on buckling instability in a thin film sandwiched between two finite-thickness substrates under in-plane compression. International Journal of Solids and Structures 2024;304:113037. https://doi.org/10.1016/j.ijsolstr.2024.113037.


    [11]Shi TF, Liu C, Zhao Z, Yu B, Liu CS, Li XY*. Rigid–flexible coupling dynamics of a threaded reusable low-shock spacecraft separation device. Nonlinear Dynamics 2024. https://doi.org/10.1007/s11071-024-10591-1.


    [12]He YX, Tan Y, Yang MS, Wang YB, Xu YG, Yuan JH, Li XY*, Chen WQ, Kang GZ. Accurate prediction of discontinuous crack paths in random porous media via a generative deep learning model. Proceedings of the National Academy of Sciences 2024;121:e2413462121. https://doi.org/10.1073/pnas.2413462121.


    2023

    [1]Li B, Jiao YN, Qin SJ, Wang Y, Liu H, Li R, Hao WZ, Li H, Xia YH, Li XY, Zhao JJ. Photoinduced Strain in Organometal Halide Perovskites. J Phys Chem Lett 2023;14:1343–53. https://doi.org/10.1021/acs.jpclett.2c03573.

     

    [2]Peng DM, Li XY. Fractal contact analysis for transversely isotropic piezoelectric materials: Theoretical and numerical predictions. Tribology International 2023;181:108323. https://doi.org/10.1016/j.triboint.2023.108323.

     

    [3]Zhong JC, Wang J, Li XY, Chu XH. Experiments and discrete element simulations of crack initiation angle of mixed-mode I/II in PMMA material. Theoretical and Applied Fracture Mechanics 2023;125:103862. https://doi.org/10.1016/j.tafmec.2023.103862.

     

    [4]Qian Z, Zhang CC, Li P, Wang B, Qian ZH, Kuznetsova I, Li XY. A dictionary-reconstruction approach for separating helical-guided waves in cylindrical pipes. J Phys D: Appl Phys 2023;56:305301. https://doi.org/10.1088/1361-6463/accaf2.

     

    [5]Tan Y, Liu C, Zhao JS, He YX, Li PD, Li XY. Phase field model for brittle fracture in multiferroic materials. Computer Methods in Applied Mechanics and Engineering 2023;414:116193. https://doi.org/10.1016/j.cma.2023.116193.

     

    [6]Wang YE, Yang MS, Li XY, Xu TF. Dynamic response of nanobeams with randomly distributed multiple vertical cracks. Thin-Walled Structures 2023;190:110926. https://doi.org/10.1016/j.tws.2023.110926.

     

    [7]Li XY, Wang CF, Zhang B, Yuan JH, Tang HP. New criteria for nanoscale slender beams and thin plates: Low frequency domain of flexural wave. Mechanics of Advanced Materials and Structures 2023;30:3639–50. https://doi.org/10.1080/15376494.2022.2079033.

     

    [8]Zhang JQ, Li XY, Kang GZ. Mode-I penny-shaped crack problem in an infinite space of one-dimensional hexagonal piezoelectric quasicrystal: exact solutions. Int J Fract 2023. https://doi.org/10.1007/s10704-023-00742-7.

     

    [9]Zhao JS, Lu TP, Zhang YX, Zhang C, Pan CF, Tan Y, Zhu JQ, Li B, Zhang L, Shi MX, Li XY. Magnetically Actuated Adhesives with Switchable Adhesion. Adv Funct Materials 2023;33:2305484. https://doi.org/10.1002/adfm.202305484.

     

    [10]Guo YQ, Liu C, Li XY. Asymmetric fracture behavior in ferroelectric materials induced by flexoelectric effect. Journal of Applied Physics 2023;134:244102. https://doi.org/10.1063/5.0178866.



     2022


    [1]Jiao Y, Qin S, Li B, Hao W, Wang Y, Li H, et al. Ferroelasticity Mediated Energy Conversion in Strained Perovskite Films. Adv Elect Materials 2022;8:2200415. https://doi.org/10.1002/aelm.202200415.

     

    [2]Wang YE, Li XY, Wu TH, Liu QS. Steady-state forced vibrations of magneto-electro-elastic Timoshenko nanobeams. Journal of Intelligent Material Systems and Structures 2022;33:2129–44. https://doi.org/10.1177/1045389X221077448.

     

    [3]Tan Y, He YX, Li XY, Kang GZ. A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 2022;399:115459. https://doi.org/10.1016/j.cma.2022.115459.

     

    [4]Zhong JC, Wang J, Li XY, Chu XH. Macro- and meso- failure mechanism analysis for shale-like brittle materials under uniaxial compression. Engineering Analysis with Boundary Elements 2022;141:189–98. https://doi.org/10.1016/j.enganabound.2022.05.015.

     

    [5]Tan Y, He YX, Li XY. Phase field fracture modeling of transversely isotropic piezoelectric material with anisotropic fracture toughness. International Journal of Solids and Structures 2022;248:111615. https://doi.org/10.1016/j.ijsolstr.2022.111615.

     

    [6]Zhao JS, Lu TP, Pan TS, Li XY, Shi MX. Mushroom-Shaped Micropillar With a Maximum Pull-Off Force. Journal of Applied Mechanics 2022;89. https://doi.org/10.1115/1.4054628.

     

    [7]Tan Y, He YX, Liu C, Li XY. Phase field fracture model of transversely isotropic piezoelectric materials with thermal effect. Engineering Fracture Mechanics 2022;268:108479. https://doi.org/10.1016/j.engfracmech.2022.108479.

     

    [8]Yang MS, Li XY. Optimum convergence parameters of lattice Boltzmann method for predicting effective thermal conductivity. Computer Methods in Applied Mechanics and Engineering 2022;394:114891. https://doi.org/10.1016/j.cma.2022.114891.

     

    [9]Duan YH, Zhang B, Li XY, Zhang X, Shen HM. Size-Dependent Elastic Buckling of Two-Variable Refined Microplates Embedded in Elastic Medium. Int J Appl Mechanics 2022;14:2250039. https://doi.org/10.1142/S1758825122500399.

     

    [10]Zhao X, Zhu WD, Li YH, Li M, Li XY. Review, classification, and extension of classical soil-structure interaction models based on different superstructures and soils. Thin-Walled Structures 2022;173:108936. https://doi.org/10.1016/j.tws.2022.108936.

     

    [11]Zhao JS, Li XY, Tan Y, Liu XK, Lu TP, Shi MX. Smart Adhesives via Magnetic Actuation. Advanced Materials 2022;34:2107748. https://doi.org/10.1002/adma.202107748.

     

    [12]Yang MS, Li XY, Yuan JH, Wen ZT, Kang GZ. A comprehensive study on the effective thermal conductivity of random hybrid polymer composites. International Journal of Heat and Mass Transfer 2022;182:121936. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121936.



     2021

    [1]Zhang ZJ, Lv JN, Li XY, Hou JL, Li Q. A fatigue model based on M-integral in notched elastic–plastic material. International Journal of Solids and Structures 2021;232:111203. https://doi.org/10.1016/j.ijsolstr.2021.111203.

     

    [2]Zhang YH, Liu WL, Li N, Qian ZH, Wang B, Liu DZ, Li XY. Design of a new type of omnidirectional shear-horizontal EMAT by the use of half-ring magnets and PCB technology. Ultrasonics 2021;115:106465. https://doi.org/10.1016/j.ultras.2021.106465.

     

    [3]Wu TH, Li XY, Tang HP. Three-dimensional fields in an infinite transversely isotropic magneto-electro-elastic space with multiple coplanar penny-shaped cracks. International Journal of Engineering Science 2021;159:103434. https://doi.org/10.1016/j.ijengsci.2020.103434.

     

    [4]Jiao YN, Yi SH, Wang HW, Li B, Hao WZ, Pan LL, Shi Y, Li XY, Liu PF, Zhang H, Gao CF, Zhao JJ, Lu J. Strain Engineering of Metal Halide Perovskites on Coupling Anisotropic Behaviors. Adv Funct Materials 2021;31:2006243. https://doi.org/10.1002/adfm.202006243.



     2020

    [1]Wu TH, Li XY, Chen XH. Three-dimensional closed-form solution to elliptical crack problem in magneto-electro-elasticity: Electrically and magnetically induced Maxwell stress boundary condition. International Journal of Solids and Structures 2020;202:729–44. https://doi.org/10.1016/j.ijsolstr.2020.07.003.

     

    [2]Thovert JF, Li XY, Malinouskaya I, Mourzenko VV, Adler PM. Propagation of acoustic waves through saturated porous media. Phys Rev E 2020;102:023001. https://doi.org/10.1103/PhysRevE.102.023001.

     

    [3]Feng P, Yuan JH, Huang Y, Li XY. Analytical Solutions for the Lateral-Torsional Buckling of Serpentine Interconnects in Stretchable Electronics. Journal of Applied Mechanics 2020;87:081005. https://doi.org/10.1115/1.4047003.

     

    [4]Tan Y, Yang MS, Li XY. Dynamic response of a circular lined tunnel with an imperfect interface embedded in the unsaturated poroelastic medium under P wave. Computers and Geotechnics 2020;122:103514. https://doi.org/10.1016/j.compgeo.2020.103514.

     

    [5]Li XY, Wang XH, Chen YY, Tan Y, Cao HJ. Bending, buckling and free vibration of an axially loaded timoshenko beam with transition parameter: Direction of axial force. International Journal of Mechanical Sciences 2020;176:105545. https://doi.org/10.1016/j.ijmecsci.2020.105545.

     

    [6]Dong YH, Li YH, Li XY, Yang J. Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Applied Mathematical Modelling 2020;82:252–70. https://doi.org/10.1016/j.apm.2020.01.054.

     

    [7]Tan Y, Li XY, Wu TH. Dynamic stress intensity factor of a rectangular crack in an infinite saturated porous medium: Mode I problem. Engineering Fracture Mechanics 2020;223:106737. https://doi.org/10.1016/j.engfracmech.2019.106737.

     

    [8]Dong YH, Li XY, Gao K, Li YH, Yang J. Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment. Nonlinear Dyn 2020;99:981–1000. https://doi.org/10.1007/s11071-019-05297-8.



     2019

    [1]Zhao JS, Zhang C, Zou D, Liu XK, Cai LX, Li XY, Shi MX. A Structured Design for Highly Stretchable Electronic Skin. Advanced Materials Technologies 2019;4:1900492. https://doi.org/10.1002/admt.201900492.

     

    [2]Wu F, Li XY, Zheng RF, Kang GZ. Theory of adhesive contact on multi-ferroic composite materials: Spherical indenter. International Journal of Engineering Science 2019;134:77–116. https://doi.org/10.1016/j.ijengsci.2018.10.009.

     

    [3]Zheng RF, Wu TH, Li XY. Elliptic crack in transversely isotropic magneto-electro-elasticity under shear loading. International Journal of Engineering Science 2019;134:47–65. https://doi.org/10.1016/j.ijengsci.2018.10.006.

     

    [4]Zheng RF, Wu TH, Li XY. Three-dimensional coupling field for an electromagnetically semi-permeable elliptical crack in multiferroic composite media. Engineering Fracture Mechanics 2019;205:418–38. https://doi.org/10.1016/j.engfracmech.2018.10.028.

     

    [5]Chen WQ, Zhu J, Li XY. General solutions for elasticity of transversely isotropic materials with thermal and other effects: A review. Journal of Thermal Stresses 2019;42:90–106. https://doi.org/10.1080/01495739.2018.1527736.

     

    [6]Zhao JS, Zhang YZ, Li XY, Shi MX. An Improved Design of the Substrate of Stretchable Gallium Arsenide Photovoltaics. Journal of Applied Mechanics 2019;86:031009. https://doi.org/10.1115/1.4042320.

     

    [7]Lu SJ, Zhang B, Li XY, Zhao JW, Zaiser M, Fan HD, Zhang X. Grain boundary effect on nanoindentation: A multiscale discrete dislocation dynamics model. Journal of the Mechanics and Physics of Solids 2019;126:117–35. https://doi.org/10.1016/j.jmps.2019.02.003.

     

    [8]Zheng RF, Wu TH, Li XY, Yuan JH. Mode I vertical elliptic crack problem of multiferroic composites. International Journal of Engineering Science 2019;141:95–111. https://doi.org/10.1016/j.ijengsci.2019.05.017.

     

    [9]Wu TH, Li XY. Elliptical crack problem in magneto-electro-thermo-elasticity of transversely isotropic materials: 3D analytical and numerical solutions. International Journal of Engineering Science 2019;144:103136. https://doi.org/10.1016/j.ijengsci.2019.103136.



     2018   

    [1]Wu F, Li XY, Chen WQ, Kang GZ, Müller R. Indentation on a transversely isotropic half-space of multiferroic composite medium with a circular contact region. International Journal of Engineering Science 2018;123:236–89. https://doi.org/10.1016/j.ijengsci.2017.11.013.

     

    [2]Li PD, Li XY, Kang GZ. Axisymmetric thermo-elastic field in an infinite one-dimensional hexagonal quasi-crystal space containing a penny-shaped crack under anti-symmetric uniform heat fluxes. Engineering Fracture Mechanics 2018;190:74–92. https://doi.org/10.1016/j.engfracmech.2017.12.001.

     

    [3]Wu F, Wu TH, Li XY. Indentation theory on a half-space of transversely isotropic multi-ferroic composite medium: sliding friction effect. Smart Mater Struct 2018;27:035005. https://doi.org/10.1088/1361-665X/aaa463.

     

    [4]Su GY, Li YX, Li XY, Müller R. Free and forced vibrations of nanowires on elastic substrates. International Journal of Mechanical Sciences 2018;138–139:62–73. https://doi.org/10.1016/j.ijmecsci.2018.01.039.

     

    [5]Wang YX, Shen HM, Zhang X, Zhang B, Liu J, Li XY. Semi-analytical study of microscopic two-dimensional partial slip contact problem within the framework of couple stress elasticity: Cylindrical indenter. International Journal of Solids and Structures 2018;138:76–86. https://doi.org/10.1016/j.ijsolstr.2017.12.030.

     

    [6]Zheng RF, Wu TH, Li XY, Chen WQ. Analytical and numerical analyses for a penny-shaped crack embedded in an infinite transversely isotropic multi-ferroic composite medium: semi-permeable electro-magnetic boundary condition. Smart Mater Struct 2018;27:065020. https://doi.org/10.1088/1361-665X/aabc30.

     

    [7]Li XY, Su GY. Buckling of nanowires: a continuum model with a transition parameter. J Phys D: Appl Phys 2018;51:275301. https://doi.org/10.1088/1361-6463/aac85f.

     

    [8]Zhao X, Li XY, Li YH. Axisymmetric analytical solutions for a heterogeneous multi-ferroic circular plate subjected to electric loading. Mechanics of Advanced Materials and Structures 2018;25:795–804. https://doi.org/10.1080/15376494.2017.1308586.


     2017

    [1]Li XY, Wang YW, Li PD, Kang GZ, Müller R. Three-dimensional fundamental thermo-elastic field in an infinite space of two-dimensional hexagonal quasi-crystal with a penny-shaped/half-infinite plane crack. Theoretical and Applied Fracture Mechanics 2017;88:18–30. https://doi.org/10.1016/j.tafmec.2016.11.005.

     

    [2]Li PD, Li XY, Kang GZ, Gao CF, Müller R. Crack tip electric polarization saturation of a thermally loaded penny-shaped crack in an infinite thermo-piezo-elastic medium. International Journal of Solids and Structures 2017;117:67–79. https://doi.org/10.1016/j.ijsolstr.2017.04.003.

     

    [3]Li XY, Zheng RF, Chen WQ, Kang GZ, Gao CF, Müller R. Three-dimensional exact magneto-electro-elastic field in an infinite transversely isotropic space with an elliptical crack under uniform loads: Shear mode. International Journal of Engineering Science 2017;116:104–29. https://doi.org/10.1016/j.ijengsci.2017.03.013.

     

    [4]Li PD, Li XY, Kang GZ, Müller R. Three-dimensional fundamental solution of a penny-shaped crack in an infinite thermo-magneto-electro-elastic medium with transverse isotropy. International Journal of Mechanical Sciences 2017;130:203–20. https://doi.org/10.1016/j.ijmecsci.2017.05.052.

     

    [5]Li PD, Li XY, Kang GZ, Müller R. Electric and magnetic polarization saturations for a thermally loaded penny-shaped crack in a magneto-electro-thermo-elastic medium. Smart Mater Struct 2017;26:095049. https://doi.org/10.1088/1361-665X/aa811f.

     

    [6]Huang Y, Xia G, Chen W, Li X. Indentation of a Transversely Isotropic Thermoporoelastic Half-Space by a Rigid Circular Cylindrical Punch. Journal of Applied Mechanics 2017;84:111001. https://doi.org/10.1115/1.4037739.


    2016

    [1]Li XY, Zheng RF, Kang GZ, Chen W-Q, Müller R. Closed-form field in an infinite space of transversely isotropic multiferroic composite medium with an elliptical or penny-shaped crack: 3D exact analysis. International Journal of Solids and Structures 2016;80:96–117. https://doi.org/10.1016/j.ijsolstr.2015.10.026.

     

    [2]Zhao X, Zhao YR, Gao XZ, Li XY, Li YH. Green׳s functions for the forced vibrations of cracked Euler–Bernoulli beams. Mechanical Systems and Signal Processing 2016;68–69:155–75. https://doi.org/10.1016/j.ymssp.2015.06.023.

     

    [3]Shi TF, Wang CJ, Liu C, Liu Y, Dong YH, Li XY. Axisymmetric thermo-elastic field in an annular plate of functionally graded multiferroic composites subjected to uniform thermal loadings. Smart Mater Struct 2016;25:035029. https://doi.org/10.1088/0964-1726/25/3/035029.

     

    [4]Li XY, Li PD, Kang GZ, Chen WQ, Müller R. Steady-state thermo-elastic field in an infinite medium weakened by a penny-shaped crack: Complete and exact solutions. International Journal of Solids and Structures 2016;84:167–82. https://doi.org/10.1016/j.ijsolstr.2016.02.001.

     

    [5]Chen T, Su GY, Shen YS, Gao B, Li XY, Müller R. Unified Green’s functions of forced vibration of axially loaded Timoshenko beam: Transition parameter. International Journal of Mechanical Sciences 2016;113:211–20. https://doi.org/10.1016/j.ijmecsci.2016.05.003.

     

    [6]Li PD, Li XY, Kang GZ. Axisymmetric thermo-elastic field in an infinite space containing a penny-shaped crack under a pair of symmetric uniform heat fluxes and its applications. International Journal of Mechanical Sciences 2016;115–116:634–44. https://doi.org/10.1016/j.ijmecsci.2016.07.027.

     

    [7]Li YX, Li XY, Kang GZ, Gao YW. Vortex-lattice pinning and critical current density in anisotropic high-temperature superconductors. Supercond Sci Technol 2016;29:104009. https://doi.org/10.1088/0953-2048/29/10/104009.

     

    [8]Wang ZP, Wang T, Li PD, Li XY, Chen WQ, Müller R. Three-dimensional fundamental thermo-elastic solutions applied to contact problems. Journal of Applied Physics 2016;120:174904. https://doi.org/10.1063/1.4966602.


     2015

    [1]Li X-Y, Wu F, Jin X, Chen WQ. 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. Journal of the Mechanics and Physics of Solids 2015;75:1–44. https://doi.org/10.1016/j.jmps.2014.11.002.

     

    [2]Li XY, Ren SC, He QC. A general solution for Stokes flow and its application to the problem of a rigid plate translating in a fluid. Acta Mech Sin 2015;31:32–44. https://doi.org/10.1007/s10409-015-0016-6.

     

    [3]Wang T, Li XY, Zhang X, Müller R. Fundamental solutions in a half space of two-dimensional hexagonal quasicrystal and their applications. Journal of Applied Physics 2015;117:154904. https://doi.org/10.1063/1.4918535.

     

    [4]Li XY, Wang T, Zheng RF, Kang GZ. Fundamental thermo‐electro‐elastic solutions for 1D hexagonal QC. Z Angew Math Mech 2015;95:457–68. https://doi.org/10.1002/zamm.201300095.

     

    [5]Wang YZ, Chen WQ, Li XY. Statics of FGM circular plate with magneto-electro-elastic coupling: axisymmetric solutions and their relations with those for corresponding rectangular beam. Appl Math Mech-Engl Ed 2015;36:581–98. https://doi.org/10.1007/s10483-015-1934-7.

     

    [6]Li PD, Li XY, Wang T. Three-Dimensional Thermo-Electro-Elastic Field in a Circular Plate of Functional Graded Materials with Transverse Isotropy. Mechanics of Advanced Materials and Structures 2015;22:537–47. https://doi.org/10.1080/15376494.2013.828810.

     

    [7]Wang YW, Wu TH, Li XY, Kang GZ. Fundamental elastic field in an infinite medium of two-dimensional hexagonal quasicrystal with a planar crack: 3D exact analysis. International Journal of Solids and Structures 2015;66:171–83. https://doi.org/10.1016/j.ijsolstr.2015.04.013.

     

    [8]Li XY, Li PD, Kang GZ. Crack tip plasticity of a thermally loaded penny-shaped crack in an infinite space of 1D QC. Acta Mechanica Solida Sinica 2015;28:471–83. https://doi.org/10.1016/S0894-9166(15)30043-4.

     

    [9]Li PD, Li XY, Kang GZ. Crack tip plasticity of a half-infinite Dugdale crack embedded in an infinite space of one-dimensional hexagonal quasicrystal. Mechanics Research Communications 2015;70:72–8. https://doi.org/10.1016/j.mechrescom.2015.09.007.

     

    [10]Zhang X, Shen HM, Liu J, Deng SS, Li XY, Cai ZB, et al. An efficient numerical model for predicting the torsional fretting wear considering real rough surface. Wear 2015;344–345:32–45. https://doi.org/10.1016/j.wear.2015.10.019.



     2014

    [1]Zhu ZW, Liu X, Li XY. Ratcheting Behaviors of the Carbon Fiber Reinforced PEEK Composites: Experimental Study and Numerical Simulation. Polymer Composites 2014;22.

     

    [2]Li XY, Zheng RF, Chen WQ. Fundamental solutions to contact problems of a magneto-electro-elastic half-space indented by a semi-infinite punch. International Journal of Solids and Structures 2014;51:164–78. https://doi.org/10.1016/j.ijsolstr.2013.09.020.

     

    [3]Li XY, Li PD, Wu TH, Shi MX, Zhu ZW. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Physics Letters A 2014;378:826–34. https://doi.org/10.1016/j.physleta.2014.01.016.

     

    [4]Li XY. Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack. International Journal of Solids and Structures 2014;51:1442–55. https://doi.org/10.1016/j.ijsolstr.2013.12.030.

     

    [5]Li XY, Zhao X, Li YH. Green’s functions of the forced vibration of Timoshenko beams with damping effect. Journal of Sound and Vibration 2014;333:1781–95. https://doi.org/10.1016/j.jsv.2013.11.007.

     

    [6]Li XY, Shen HM, Li GB, Ye GR. Physical Bounds for a Half-Infinite Plane Crack in an Infinite Thermo-Electro-Elastic Medium with Transverse Isotropy. Mechanics of Advanced Materials and Structures 2014;21:579–87. https://doi.org/10.1080/15376494.2012.699601.

     

    [7]Li XY, Wu F, Wu YF, Chen WQ. Indentation on two-dimensional hexagonal quasicrystals. Mechanics of Materials 2014;76:121–36. https://doi.org/10.1016/j.mechmat.2014.06.007.

     

    [8]Li XY, Dong YH, Liu C, Liu Y, Wang CJ, Shi TF. Axisymmetric thermo-magneto-electro-elastic field in a heterogeneous circular plate subjected to a uniform thermal load. International Journal of Mechanical Sciences 2014;88:71–81. https://doi.org/10.1016/j.ijmecsci.2014.07.010.


     2013

    [1]Wu YF, Chen WQ, Li XY. Indentation on one-dimensional hexagonal quasicrystals: general theory and complete exact solutions. Philosophical Magazine 2013;93:858–82. https://doi.org/10.1080/14786435.2012.735772.

     

    [2]Li XY, Gu ST, He QC, Chen WQ. Penny-shaped Dugdale crack in a transversely isotropic medium and under axisymmetric loading. Mathematics and Mechanics of Solids 2013;18:246–63. https://doi.org/10.1177/1081286512437395.

     

    [3]Li XY. Fundamental solutions of penny-shaped and half-infinite plane cracks embedded in an infinite space of one-dimensional hexagonal quasi-crystal under thermal loading. Proc R Soc A 2013;469:20130023. https://doi.org/10.1098/rspa.2013.0023.

     

    [4]Li XY, Li PD, Kang GZ, Pan DZ. Axisymmetric thermo-elasticity field in a functionally graded circular plate of transversely isotropic material. Mathematics and Mechanics of Solids 2013;18:464–75. https://doi.org/10.1177/1081286512442437.

     

    [5]Li XY, Ding HJ, Chen WQ, Li PD. Three-Dimensional Piezoelectricity Solutions for Uniformly Loaded Circular Plates of Functionally Graded Piezoelectric Materials With Transverse Isotropy. Journal of Applied Mechanics 2013;80:041007. https://doi.org/10.1115/1.4007968.

     

    [6]Li XY, Deng H. On 2D Green’s functions for 1D hexagonal quasi-crystals. Physica B: Condensed Matter 2013;430:45–51. https://doi.org/10.1016/j.physb.2013.08.026.


    [1]Li PD, Li XY, Zheng RF. Thermo-elastic Greenʼs functions for an infinite bi-material of one-dimensional hexagonal quasi-crystals. Physics Letters A 2013;377:637–42. https://doi.org/10.1016/j.physleta.2012.12.039.


     2012

    [1]Li XY, Li PD. Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Physics Letters A 2012;376:2004–9. https://doi.org/10.1016/j.physleta.2012.04.049.

     

    [2]LI XY, Wu J, Chen WQ, Wang H-Y, Zhou ZQ. Exact and complete fundamental solutions for penny-shaped crack in an infinite transversely isotropic thermoporoelastic medium: mode I problem. Structural Engineering and Mechanics 2012;42:313–34. https://doi.org/10.12989/SEM.2012.42.3.313.

     

    [3]Li XY. Exact fundamental thermo-elastic solutions of a transversely isotropic elastic medium with a half infinite plane crack. International Journal of Mechanical Sciences 2012;59:83–94. https://doi.org/10.1016/j.ijmecsci.2012.03.007.

     

    [4]Li XY. Fundamental electro-elastic field in an infinite transversely isotropic piezoelectric medium with a permeable external circular crack. Smart Mater Struct 2012;21:065019. https://doi.org/10.1088/0964-1726/21/6/065019.

     

    [5]Li XY, Chen WQ, Wang H, Wang G. Crack tip plasticity of a penny-shaped Dugdale crack in a power-law graded elastic infinite medium. Engineering Fracture Mechanics 2012;88:1–14. https://doi.org/10.1016/j.engfracmech.2012.03.006.

     

    [6]Li XY, Yang D, Chen WQ, Kang GZ. Penny-Shaped Dugdale Crack in a Transverse Isotropic Medium. Int J Fract 2012;176:207–14. https://doi.org/10.1007/s10704-012-9720-4.

     

    [7]Li XY. Exact and complete electro‐elastic field in a half‐space of piezoelectric medium with a charged surface electrode: Revisit. Z Angew Math Mech 2012;92:816–23. https://doi.org/10.1002/zamm.201200015.


     2011

    [1]Li XY. On the half-infinite crack problem in thermo-electro-elasticity. Mechanics Research Communications 2011;38:506–11. https://doi.org/10.1016/j.mechrescom.2011.06.002.

     

    [2]Li XY, Wu J, Ding HJ, Chen WQ. 3D analytical solution for a functionally graded transversely isotropic piezoelectric circular plate under tension and bending. International Journal of Engineering Science 2011;49:664–76. https://doi.org/10.1016/j.ijengsci.2011.03.001.


     2005-2010

    [1]Ding HJ, Li XY, Chen WQ. Analytic solutions for a uniformly loaded circular plate with clamped edges. J Zheijang Univ-Sci A 2005;6:1163–8. https://doi.org/10.1631/jzus.2005.A1163.


    [2]Li XY, Ding HJ, Chen WQ. Pure bending of simply supported circular plate of transversely isotropic functionally graded material. J Zhejiang Univ - Sci A 2006;7:1324–8. https://doi.org/10.1631/jzus.2006.A1324.


    [3]Li XY, Ding HJ, Chen WQ. Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk. International Journal of Solids and Structures 2008;45:191–210. https://doi.org/10.1016/j.ijsolstr.2007.07.023.

     

    [4]Li XY, Ding HJ, Chen WQ. Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic functionally graded materials. Acta Mech 2008;196:139–59. https://doi.org/10.1007/s00707-007-0498-9.

     

    [5]Li XY, Ding HJ, Chen WQ. Three-dimensional analytical solution for functionally graded magneto–electro-elastic circular plates subjected to uniform load. Composite Structures 2008;83:381–90. https://doi.org/10.1016/j.compstruct.2007.05.006.

     

    [6]Li XY, Ding HJ, Chen WQ. Three-dimensional analytical solution for a transversely isotropic functionally graded piezoelectric circular plate subject to a uniform electric potential difference. Sci China Ser G-Phys Mech Astron 2008;51:1116–25. https://doi.org/10.1007/s11433-008-0100-z.

     

    [7]Li XY, Chen WQ, Wang HY. General steady-state solutions for transversely isotropic thermoporoelastic media in three dimensions and its application. European Journal of Mechanics - A/Solids 2010;29:317–26. https://doi.org/10.1016/j.euromechsol.2009.11.007.




     



科研项目

    9.基于梯度样品全场分析的高通量表征力学理论(国家自然科学基金重大项目) (2022.01-2026.12) 参与

    8.热-机械荷载作用下准晶体中剪切模态平面裂纹的三维分析(国家自然基金面上项目)(2017.01-2020.12) 主持
    7.德国洪堡基金会奖学金(2015.03-2017.03)
    6.磁-电-弹性复合材料裂纹问题的三维精确分析(教育部新世纪优秀人才支持计划)主持
    5.力-电-磁-热多场条件下的三维接触问题研究(南航国家重点实验室开放基金)主持
    4.准晶弹性力学中裂纹和接触问题的三维分析(国家自然科学基金) 主持
    3.势理论在准晶弹性力学中的应用 (教育部归国留学人员基金) 主持
    2.势理论方法在准晶弹性力学中的应用(西南交大创新基金) 主持
    1.波在多孔介质中的传播(挪威国家石油公司) 主研

     

研究领域

    1、多场耦合力学 

    针对磁-电-弹-热等多场耦合作用下的多铁性材料,基于势理论建立了相应的边界微分-积分方程,利用理论分析、数值模拟、纳米压痕仪和原子力显微镜实验分析研究: 

    (1)断裂问题的三维分析,基于势理论方法求解静力问题;基于积分变换和维纳-霍普夫技术求解动态问题;多铁性材料的缺陷和夹杂问题; 

    (2)接触问题的三维分析,不同压头形状下多铁性材料的接触问题;微观尺度下压头和基体粘附效应的接触问题;功能梯度涂层多铁性材料的接触问题。 


    2、随机复杂介质

          基于随机过程的思想,运用高斯随机场法、模拟退火法、CT 扫描重构法等重建随机复杂介质的数字模型,运用 LBM、相场模拟等数值方法,结合工业 CT、PIV 系统、声学阻抗管、孔隙结构分析仪等,研究: 

    (1)声波在多孔介质中的传播 

    (2)多孔介质中的渗流和传热

    (3)高分子复合材料有效热导率改性

    (4)随机复合材料有效热导率预测

    (5)随机多孔介质断裂力学行为

    (6) 多孔介质力学与医学的交叉结合



    实验室主要实验设备:


                                    

                             4206-T型阻抗/ 传递损失测量管                                                                                                   液滴形状分析仪(DSA30S)

      

                                    

                         倒置显微镜(Nikon ECLIPSE Ti(Ti-S))                                                                                   BK-112型比表面分析仪


                                   

                                      K100-C 型力张力计                                                                                                          原子力显微镜(AFM)


                                   YG-97A型电容式压汞仪

著作成果

    暂无内容

报考该导师研究生的方式

欢迎你报考李翔宇老师的研究生,报考有以下方式:

1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择李翔宇老师,你的所有申请信息将发送给李翔宇老师,老师看到后将和你取得联系,点击此处参加夏令营活动

2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请李翔宇老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为李翔宇老师,老师看到信息后将和你取得联系,点击此处推免生预报名

3、参加全国硕士研究生统一招生考试报考李翔宇老师招收的专业和方向,进入复试后提交导师意向时选择李翔宇老师。

4、如果你有兴趣攻读李翔宇老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。

点击关闭