凌斯祥
副教授
硕士生导师
个人信息Personal Information
学历:博士研究生毕业
学位:工学博士学位
办公地点:X4223B
学科:地质资源与地质工程. 地质工程. 地质工程. 资源与环境
所在单位:地球科学与工程学院
报考该导师研究生的方式
欢迎你报考凌斯祥老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择凌斯祥老师,你的所有申请信息将发送给凌斯祥老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请凌斯祥老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为凌斯祥老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考凌斯祥老师招收的专业和方向,进入复试后提交导师意向时选择凌斯祥老师。
4、如果你有兴趣攻读凌斯祥老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。
点击关闭
- Evolution of dilation with time based on the molecular microkinetics of red-bed argillaceous sandstone in Hubei Province, China[J].Engineering Geology,2024,330:107430
- Mechanism and influence on red-bed soft rock disintegration durability of particle roughness based on experiment and fractal theory[J].Construction and Building Materials,2024,419:135504
- Microscopic weathering mechanisms of subflorescence and crust patterns in the Nankan Grotto, northern Sichuan, China[J].Heritage Science,2023,11:181
- Hydrochemistry process and microweathering behaviour of sandstone heritages in the Nankan Grotto, China: Insights from field micro‑observations and water–rock interaction experiments[J].Bulletin of Engineering Geology and the Environment,2023,82:356
- Geochemical accumulation and source tracing of heavy metals in arable soils from a black shale catchment, southwestern China.Science of the Total Environment,2023,857:159467
- Characteristics and triggers of earthquake-induced landslides of pyroclastic fall deposits: an example from Hachinohe during the 1968 M7.9 Tokachi-Oki earthquake, Japan[J].Engineering Geology,2020,264:105301.
- Characterizing the distribution pattern and geologic and geomorphic controls on earthquake-triggered landslide occurrence during the 2017 Ms 7.0 Jiuzhaigou earthquake, Sichuan, China.Landslides,2021,18:1275-1291.
- Oxidation of black shale and its deterioration mechanism in the slip zone of the Xujiaping landslide in Sichuan Province, Southwestern China.Catena,2021,200:105139.
- Comparing the prediction performance of logistic model tree with different ensemble techniques in susceptibility assessments of different landslide types[J].Geocarto International,2022
- Landslide susceptibility assessment using statistical and machine learning techniques: a case study in the upper reaches of the Minjiang River, southwestern China..Frontiers in Earth Science,2022,10:986172