博士生导师
硕士生导师
[1]Dingshi Li, Bixiang Wang, Xiaohu Wang, Limiting behavior of non-autonomous stochastic reactiondiffusion equations on thin domains. J. Differential Equations 262(2017), no. 3, 1575-1602.
[2]Anhui Gu, Dingshi Li(通讯作者), Bixiang Wang, Han Yang, Regularity of random attractors for fractional stochastic reaction diffusion equations on Rn. J. Differential Equations 262(2018), no. 3, 1575-1602.
[3]Dingshi Li,Xiaohu Wang,Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains,Discrete Contin. Dyn. Syst. -B , Accepted.
[4] Dingshi, Li, Lin Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay. J. Math. Phys. 59 (2018), no. 3, 032703, 35 pp.
[5]Dingshi Li, Lin Shi,Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-Landau equations with timevarying delays in the delay, Journal of Difference Equation and Applications.https://doi.org/10.1080/10236198.2018.1437913.
[6] Dingshi Li, kening Lu, Bixiang, Wang, Xiaohu, Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete Contin. Dyn. Syst. -A 38 (2018), no. 1, 187-208.
[7]Dingshi Li, Bing Li, Global Mean Square Exponential Stability of Impulsive Non-autonomous Stochastic Neural Networks with Mixed Delays, Neural Process Letter 44(2016), 751-764.
[8]Dingshi Li, Guiling Chen, Impulses-induced p-exponential input-to-state stability for a class of stochastic delayed partial differential equations, International Journal of Control, DOI: 10.1080/00207179.2017.1414309.
[9]Guiling Chen, Dingshi Li(通讯作者), van Gaans Onno; Verduyn Lunel, Sjoerd Stability results for nonlinear functional differential equations using fixed point methods. Indag. Math. (N.S.)29 (2018), no. 2, 671–686.(A)
[10]Dingshi Li, Xiaohu Wang, Daoyi Xu, Existence and global pexponential stability of periodic solution for impulsive stochasti cneural networks with delays. Nonlinear Anal. Hybrid Syst. 6 (2012), 847–858.
[11] Xinhong Zhang, Ke Wang, Dingshi Li(通讯作者), Stochastic periodic solutions of stochastic differential equations driven by Levy process,Journal of Mathematic Analysis and Application, 430 (2015) 231-242.
[12] Dingshi Li, The stationary distribution and ergodicity of a stochastic generalized logistic system, Statistics & Probability Letters, 83(2013) 580-583.
[13]Dingshi Li, Danhua He, Daoyi Xu, Mean square exponential stability of impulsive stochastic reaction-diffusion Cohen-Grossberg neural networks with delays. Math. Comput. Simulation 82 (2012), 1531-1543.
[14]Dingshi Li, Xiaoming Fan, Exponential stability of impulsive stochastic partial differential equations with delays, Statistics Probability Letters, 126 (2017), 185-192.
[15]Guiling, Chen, Dingshi, Li(通讯作者), Onno, van Gaans, Sjoerd, Verduyn Lunel, Stability of nonlinear neutral delay differential equations with variable delays. Electron. J. Differential Equations 2017, Paper No. 118, 14 pp.
[16]Dingshi Li, Guiling Chen, Exponential stability of a class of impulsive stochastic delay partial differential equations driven by a fractional Brownian motion, International Journal of Control, Automation, and Systems, 15(4) (2017) 1561-1568.
[17] Dingshi Li, Daoyi Xu, Attracting and quasi-invariant sets of stochastic neutral partial functional differential Equations,Acta Mathematica Scientia. 33B(2013), 578-588.
[18] Dingshi Li, Daoyi Xu, Existence and global attractivity of periodic solution for impulsive stochastic Volterra-Levin equations, Electronic Journal of Qualitative Theory of Differential Equations, 46 (2012) 1-12.
[19] Dingshi Li,Shujun Long,Difference inequality for attracting and quasi-invariant sets for a class of impulsive stochastic difference equations with continuous time,Mathematical Inequalities &Applications,16(2013), 935-945.
[20] Dingshi Li,Chao Ma,Attractor and stochastic boundedness for stochastic infinte delay neural networks with markovian switching, Neural Process Letter,40(2014), 127-142.
[21] Dingshi Li, Daoyi Xu, Perodic solutions of stochastic delay differential equations and applications to Logistic equations and neural networks, J. Korean Math. Soc. 50 (2013), 1165-1181.
欢迎你报考黎定仕老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择黎定仕老师,你的所有申请信息将发送给黎定仕老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请黎定仕老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为黎定仕老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考黎定仕老师招收的专业和方向,进入复试后提交导师意向时选择黎定仕老师。
4、如果你有兴趣攻读黎定仕老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。