原子级抛光:芯片/MEMS、轴承/齿轮是决定信息通讯、人工智能、轨道交通、国防安全等领域高端装备能否安全可靠服役的关键部件,其精度和表面完整性直接决定了产品的性能和可靠性。为此,面向先进制造国家重大需求,采用化学、机械、电场、能束等多源能量复合加工技术,实现超精密低损伤表面制造,获得高性能机械表面/界面,提升高端装备的使役性能!
以纳米摩擦学为基础,研究内容涵盖材料去除机理、超精抛光工艺、数控创成装备!
SCI论文(一作/通讯,封面论文3篇)
[1] Qijian Zhao, Chuandong Tian, Jiaxin Zheng, Pengfei Sun, Liang Jiang, Linmao Qian, Preparing an ultra-smooth TaW alloy surface with chemical mechanical polishing via controlling galvanic corrosion, Journal of Applied Electrochemistry, 2024, 54(4): 839-850.
[2] Yuan Wu, Rui Lei, Liang Jiang, Linmao Qian, Achieving equivalent removal of Ta and Ru via controlling oxidation for chemical mechanical polishing of advanced barrier layer, Materials Science in Semiconductor Processing, 2024, 180: 108564.
[3] Yuan Wu, Liang Jiang, Wenhui Li, Jiaxin Zheng, Yushan Chen, Linmao Qian, Two material removal modes in chemical mechanical polishing: mechanical plowing vs. chemical bonding, Friction, 2024, 12(5): 897-905.
[4] Wumao Peng, Liang Jiang, Chaopeng Huang, Yu Chen, Yiming Tian, Yanjun Han, Shaohua Zhang, Linmao Qian, Surface roughness evolution law in full-aperture chemical mechanical polishing, International Journal of Mechanical Sciences, 2024: 109387.
[5] Yushan Chen, Liang Jiang, Linmao Qian, Micro-scratches generation mechanism by copper oxides adhered on silica abrasive in copper chemical mechanical polishing, Tribology International, 2024, 194: 109434.
[6] Yushan Chen, Liang Jiang, Linmao Qian, AFM probe with the U-shaped cross-sectional cantilever for measuring the ultra-low coefficient of friction of 10−6, Friction, 2024.
[7] Yushan Chen, Liang Jiang, Linmao Qian, AFM probe for measuring ∼10−5 ultra-low friction coefficient: Design and application, Friction, 2024, 12(1): 64-73.
[8] Xia Zhong, Yushan Chen, Liang Jiang, Wenhui Li, Linmao Qian, Synergistic effect of oxidation and complexation on the material removal of pure iron at the nanoscale, Wear, 2023, 524-525: 204771.
[9] Yongshun Zhang, Liang Jiang, Wenhui Li, Linmao Qian, Competitive effect between corrosion inhibitors in copper chemical mechanical polishing, Materials Science in Semiconductor Processing, 2023, 161: 107470.
[10] Hao Zhang, Wumao Peng, Liang Jiang, Yang Gao, Wenhui Li, Linmao Qian, Enhancing Chemical Mechanical Polishing Efficiency of Steel with Sulfate, ECS Journal of Solid State Science and Technology, 2023, 12(9): 094005.
[11] Pan Wang, He Liang, Liang Jiang, Linmao Qian, Effect of nanoscale surface roughness on sliding friction and wear in mixed lubrication, Wear, 2023, 530-531: 204995.
[12] Mao Sun, Liang Jiang, Yuan Wu, Yushan Chen, Qiuyu Li, Linmao Qian, Effect of potassium persulfate on chemical mechanical planarization of Cu/Ni microstructures for MEMS, Microelectronic Engineering, 2023, 275: 111979.
[13] Wumao Peng, Chaopeng Huang, Shaohua Zhang, Yu Chen, Yanjun Han, Liang Jiang, Linmao Qian, Achieving a super-smooth surface of stainless bearing steel with chemical mechanical polishing via controlling corrosive wear of Fe and Cr, Journal of Solid State Electrochemistry, 2023, 27(2): 467-477.
[14] Liang Jiang, Qiuyu Li, Yushan Chen, Yuan Wu, Mao Sun, Linmao Qian, Polyacrylic Acid as a Lubricant and a Complement to 1,2,4-Triazole for Copper Chemical Mechanical Polishing, Tribology Letters, 2023, 71(2): 62.
[15] Gangguo Xiao, Liang Jiang, Wumao Peng, Jinwei Liu, Changbang Deng, Linmao Qian, Towards a deep understanding of oxidation in the material removal of GCr15 bearing steel during chemical mechanical polishing, Wear, 2022, 508-509: 204466.
[16] Yuan Wu, Liang Jiang, Jiaxin Zheng, Linmao Qian, Improving Chemical Mechanical Polishing Efficiency of PZT with Less than 100 ppm SO42−, ECS Journal of Solid State Science and Technology, 2022, 11(9): 094001.
[17] Yuan Wu, Liang Jiang, Linmao Qian, Achieving smooth PZT surface via chemical mechanical polishing with ethylenediamine dihydrochloride, Ceramics International, 2022, 48(13): 18891-18898.
[18] Pengfei Shi, Yangyang Lu, Junhui Sun, Chuan Tang, Yang Wang, Liang Jiang, Linmao Qian, Lei Chen, Towards a deeper understanding of superlubricity on graphite governed by interfacial adhesion, Carbon, 2022, 199: 479-485.
[19] Wumao Peng, Yang Gao, Liang Jiang, Jinwei Liu, Linmao Qian, Attaining Ultra-Smooth 18CrNiMo7-6 Case Hardening Steel Surfaces with Chemical Mechanical Polishing, Lubricants, 2022, 10(9): 199.
[20] Jinwei Liu, Liang Jiang, Gangguo Xiao, Linmao Qian, High-performance chemical mechanical polishing of GCr15 bearing steel enabled by the synergistic action of oxalic acid and H2O2, Journal of Solid State Electrochemistry, 2022, 26(3): 809-820.
[21] Jinwei Liu, Liang Jiang, Linmao Qian, Achievement of sub-nanometer surface roughness of bearing steel via chemical mechanical polishing with the synergistic effect of heterocyclic compounds containing N and S, Journal of Applied Electrochemistry, 2022, 52(2): 357-373.
[22] Jinwei Liu, Pan Hao, Liang Jiang, Linmao Qian, Novel Eco-friendly Slurries for Chemical Mechanical Polishing of GCr15 Bearing Steel, Tribology Letters, 2022, 70(3): 67.
[23] Changbang Deng, Liang Jiang, Linmao Qian, High-Efficiency Chemical Mechanical Polishing of Ti-6Al-4V Alloy via the Synergistic Action of H2O2 and K+ Under Alkaline Conditions, ECS Journal of Solid State Science and Technology, 2022, 11(2): 024005.
[24] Yushan Chen, Wenbin Xu, Liang Jiang, Linmao Qian, Scanning probe microscope probe switching unit with electrical measurement for in situ multifunctional characterization: Design and preliminary application in tribocorrosion investigation, Journal of Applied Physics, 2022, 132(10): 105303.
[25] Ting Zhao, Liang Jiang, Jinwei Liu, Hanqiang Wu, Na Qin, Linmao Qian, Potassium persulfate as an effective oxidizer for chemical mechanical polishing of GCr15 bearing steel, Journal of Applied Electrochemistry, 2021, 51(5): 803-814.
[26] Hanqiang Wu, Liang Jiang, Xia Zhong, Jinwei Liu, Na Qin, Linmao Qian, Exploring the role of −NH2 functional groups of ethylenediamine in chemical mechanical polishing of GCr15 bearing steel, Friction, 2021, 9(6): 1673-1687.
[27] Jinwei Liu, Liang Jiang, Hanqiang Wu, Xia Zhong, Linmao Qian, Performance of Carboxyl Groups in Chemical Mechanical Polishing of GCr15 Bearing Steel: Effects of Carbon Chain Length and pH, Tribology Letters, 2021, 69(4): 161.
[28] Changbang Deng, Liang Jiang, Na Qin, Linmao Qian, Effects of pH and H2O2 on the chemical mechanical polishing of titanium alloys, Journal of Materials Processing Technology, 2021, 295: 117204.
[29] Changbang Deng, Liang Jiang, Linmao Qian, Synergistic Effect of F− and Persulfate in Efficient Titanium Alloy Chemical Mechanical Polishing, ECS Journal of Solid State Science and Technology, 2021, 10(11): 114003.
[30] Hanqiang Wu, Liang Jiang, Jinwei Liu, Changbang Deng, Haifeng Huang, Linmao Qian, Efficient Chemical Mechanical Polishing of AISI 52100 Bearing Steel with TiSol-NH4 Dispersion-Based Slurries, Tribology Letters, 2020, 68(1): 34.
[31] Jinwei Liu, Liang Jiang, Hanqiang Wu, Ting Zhao, Linmao Qian, 5-Methyl-1H-benzotriazole as an effective corrosion inhibitor for ultra-precision chemical mechanical polishing of bearing steel, Journal of The Electrochemical Society, 2020, 167(13): 131502.
[32] Yijia Zou, Liang Jiang, Bin Lin, Jinwei Liu, Zitong Zhou, Linmao Qian, Development of a reliable probes in situ linear exchange module based on an environment control atomic force microscope, Review of Scientific Instruments, 2019, 90(3): 036101.
[33] Zitong Zhou, Liang Jiang, Jinwei Liu, Changbang Deng, Linmao Qian, Preliminary investigation of the effect of environmental humidity on the nanoscale mechanical removal of KDP crystal, Micro & Nano Letters, 2019, 14(5): 538-543.
[34] Bin Lin, Liang Jiang, Yushan Chen, Jinwei Liu, Changbang Deng, Linmao Qian, A high-precision eight-AFM probe rotary exchange module, Review of Scientific Instruments, 2019, 90(7): 076110.
[35] Jinwei Liu, Liang Jiang, Changbang Deng, Wenhao Du, Linmao Qian, Effect of oxide film on nanoscale mechanical removal of pure iron, Friction, 2018, 6(3): 307-315.
[36] Liang Jiang, Weifeng Yao, Yongyong He, Zhongdian Cheng, Julong Yuan, Jianbin Luo, An experimental investigation of double-side processing of cylindrical rollers using chemical mechanical polishing technique, The International Journal of Advanced Manufacturing Technology, 2016, 82(1): 523-534.
[37] Liang Jiang, Yongyong He, He Liang, Yuzhuo Li, Jianbin Luo, Effect of potassium ions on tantalum chemical mechanical polishing in H2O2-based alkaline slurries, ECS Journal of Solid State Science and Technology, 2016, 5(2): P100-P111.
[38] Liang Jiang, Yongyong He, Jing Li, Jianbin Luo, Passivation Kinetics of 1,2,4-Triazole in Copper Chemical Mechanical Polishing, ECS Journal of Solid State Science and Technology, 2016, 5(5): P272.
[39] Liang Jiang, Yongyong He, Ye Yang, Jianbin Luo, Chemical mechanical polishing of stainless steel as solar cell substrate, ECS Journal of Solid State Science and Technology, 2015, 4(5): P162-P170.
[40] Liang Jiang, Yongyong He, Jianbin Luo, Chemical mechanical polishing of steel substrate using colloidal silica-based slurries, Applied Surface Science, 2015, 330: 487-495.
[41] Liang Jiang, Yongqing Lan, Yongyong He, Yuzhuo Li, Jianbin Luo, Functions of Trilon® P as a polyamine in copper chemical mechanical polishing, Applied Surface Science, 2014, 288: 265-274.
[42] Liang Jiang, Yongqing Lan, Yongyong He, Yan Li, Yuzhuo Li, Jianbin Luo, 1,2,4-Triazole as a corrosion inhibitor in copper chemical mechanical polishing, Thin Solid Films, 2014, 556: 395-404.
[43] Liang Jiang, Yongyong He, Xiangyu Niu, Yuzhuo Li, Jianbin Luo, Synergetic effect of benzotriazole and non-ionic surfactant on copper chemical mechanical polishing in KIO4-based slurries, Thin Solid Films, 2014, 558: 272-278.
[44] Liang Jiang, Yongyong He, Jianbin Luo, Effects of pH and oxidizer on chemical mechanical polishing of AISI 1045 steel, Tribology Letters, 2014, 56(2): 327-335.
[45] Liang Jiang, Yongyong He, Yuzhuo Li, Jianbin Luo, Effect of ionic strength on ruthenium CMP in H2O2-based slurries, Applied Surface Science, 2014, 317: 332-337.
[46] Liang Jiang, Yongyong He, Yan Li, Yuzhuo Li, Jianbin Luo, Synergetic effect of H2O2 and glycine on cobalt CMP in weakly alkaline slurry, Microelectronic Engineering, 2014, 122: 82-86.
发明专利
[1] Liang Jiang, Linmao Qian, Jianbin Luo, Bin Lin, Yushan Chen, Numerically controlled rotary probe switching device based on environment-controllable atomic force microscope, 2020.08.11, United States, US10739377B2.
[2] Linmao Qian, Liang Jiang, Bin Lin, Jianbin Luo, Yushan Chen, Bin Li, Methods for designing and processing a microcantilever-based probe with an irregular cross section applied in an ultra-low friction coefficient measurement at a nanoscale single-point contact, 2020.08.11, United States, US10739379B2.
[3] Yongqing Lan, Bastian Marten Noller, Yuzhou Li, Liang Jiang, Daniel Kwo-Hung Shen, Reza Golzarian, Chemical-mechanical polishing composition comprising organic/inorganic composite particles, 2019.02.26, USA, US10214663B2.
[4] 江亮, 赵立杰, 孙茂, 杨晴, 郑英彬, 钱林茂, 一种微尺度3D打印铜/镍异质微结构表面平坦化方法, 2023.03.24, 中国, ZL202110809582.8.
[5] 江亮, 张祥, 钱林茂, 王超, 叶敏恒, 叶作彦, 晏璐文, 谢鸿升, 叶夫义, 一种应用于3D打印不锈钢流道精密加工的装置及方法, 2023.01.03, 中国, ZL202210572967.1.
[6] 江亮, 晏璐文, 钱林茂, 谢鸿升, 叶夫义, 一种齿轮数控化学机械抛光装置及方法, 2023.04.28, 中国, ZL202210621257.3.
[7] 江亮, 钱林茂, 武韩强, 刘进伟, 邓昌邦, 一种模块化设计的自供紫外光源的绿色节能抛光头装置, 2023.11.10, 中国, ZL201910236791.0.
[8] 江亮, 钱林茂, 陈宇山, 刘进伟, 邓昌邦, 一种广配激光头的聚焦高度可调的多探针扫描探测装置, 2023.09.22, 中国, ZL201910236785.5.
[9] 江亮, 黄朝蓬, 钱林茂, 张韶华, 周宁宁, 陈宇, 一种轴承套圈接触式超精密化学机械抛光装置及方法, 2023.01.31, 中国, ZL202210197054.6.
[10] 江亮, 徐文镔, 钱林茂, 应用于真空或气氛环境腔体间样品传输的梳齿式移样机构, 2022.01.28, 中国, ZL202110301540.3.
[11] 江亮, 徐文镔, 钱林茂, 吴渊, 应用于真空或气氛环境腔体间的样品传输装置, 2021.10.22, 中国, ZL202011498460.3.
[12] 江亮, 徐文镔, 钱林茂, 解国新, 和枫, 应用于扫描探针显微镜的摆动式多模式组合探针测试装置, 2021.11.02, 中国, ZL202110421860.2.
[13] 江亮, 吴渊, 钱林茂, 陈宇山, 徐文镔, 应用于真空扫描探针显微镜与真空管道间样品传送的装置, 2021.01.05, 中国, ZL202010089798.7.
[14] 江亮, 钱林茂, 李斌, 郭丹, 雒建斌, 林斌, 一种应用于纳米级单点接触超低摩擦系数测量的矩形微悬臂梁探针设计及加工方法, 2021.02.19, 中国, ZL201710806553.X.
[15] 江亮, 吕冰海, 仲夏, 黄朝蓬, 刘进伟, 钱林茂, 微型轴承核心元件超精密柔性化学机械抛光装置及方法, 2021.02.26, 中国, ZL202010118552.8.
[16] 江亮, 陈宇山, 钱林茂, 郝盼, 吴渊, 一种扫描探针显微镜狭小实验腔环境气氛精确控制装置, 2021.09.14, 中国, ZL202010115921.8.
[17] 江亮, 林斌, 钱林茂, 邹乙稼, 赵婷, 基于环境可控型原子力显微镜的数控旋转式探针切换装置, 2019.06.07, 中国, ZL201810637066.X.
[18] 江亮, 雒建斌, 何永勇, 用于钴阻挡层结构化学机械抛光的抛光液及其应用, 2017.06.23, 中国, ZL201510213354.9.
[19] 江亮, 袁巨龙, 雒建斌, 姚蔚峰, 何永勇, 轴承圆柱滚子圆柱面的超精加工方法, 2016.09.21, 中国, ZL201510041312.1.
[20] 江亮, 雒建斌, 何永勇, 用于加工超光滑轴承钢表面的抛光液及其应用, 2016.04.20, 中国, ZL201410490804.4.
[21] 吕冰海, 江亮, 王佳焕, 周亚峰, 陈宇山, 邵琦, 袁巨龙, 三电极体系可控电化学辅助力流变超精密抛光装置, 2024.05.07, 中国, ZL201911085505.1.
[22] 钱林茂, 江亮, 林斌, 雒建斌, 超低摩擦系数测量用异形截面悬臂梁探针设计及加工方法, 2020.10.23, 中国, ZL201711033488.8.
暂无内容
国家重点研发计划课题:超精密低损伤复杂曲面创成及机理研究,2020/12-2025/11
国家自然科学基金面上项目:面向微机电系统复杂三维微结构制造的化学机械平坦化基础研究,2020/01-2023/12
国家自然科学基金青年科学基金项目:面向超光滑、低损伤轴承钢表面的化学机械抛光机理研究,2017/01-2019/12
中国科协青年托举:2016/12-2018/12
欢迎你报考江亮老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择江亮老师,你的所有申请信息将发送给江亮老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请江亮老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为江亮老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考江亮老师招收的专业和方向,进入复试后提交导师意向时选择江亮老师。
4、如果你有兴趣攻读江亮老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。