1. C. F. Hu, Y. W. Bao, and Y. C. Zhou, “The Energy-dissipation Mechanism of Ti3SiC2 Ceramic Investigated by Indentation,” Chin. J. Mater. Res., 19, 457-63 (2005).
2. Y. W. Bao, C. F. Hu, and Y. C. Zhou, “Damage Tolerance of Nanolayer-grained Ceramic: A Quantitative Estimation,” Mater. Sci. Technol., 22, 227-30 (2006).
3. C. F. Hu, Y. C. Zhou, Y. W. Bao, and D. T. Wan, “Tribological Properties of Polycrystalline Ti3SiC2 and Al2O3-reinforced Ti3SiC2 Composites,” J. Am. Ceram. Soc., 89, 3456-61 (2006).
4. C. F. Hu, Z. J. Lin, L. F. He, Y. W. Bao, J. Y. Wang, M. S. Li, and Y. C. Zhou, “Physical and Mechanical Properties of Bulk Ta4AlC3 Ceramic Prepared by an In Situ Reaction Synthesis/Hot Pressing Method,” J. Am. Ceram. Soc., 90, 2542-8 (2007).
5. D. T. Wan, C. F. Hu, Y. W. Bao, and Y. C. Zhou, “Effect of SiC Particles on the Friction and Wear Behavior of Ti3Si(Al)C2-based Composites,” Wear, 262, 826-32 (2007).
6. D. T. Wan, Y. C. Zhou, C. F. Hu, and Y. W. Bao, “Improved Strength-impairing Contact Damage Resistance of Ti3Si(Al)C2/SiC Composites,” J. Eur. Ceram. Soc., 27, 2069-76 (2007).
7. C. F. Hu, F. Z. Li, J. Zhang, J. M. Wang, J. Y. Wang, and Y. C. Zhou, “Nb4AlC3: A New Compound Belonging to the MAX Phases,” Scripta Mater., 57, 893-6 (2007).
8. C. F. Hu, J. Zhang, Y. W. Bao, J. Y. Wang, M. S. Li, and Y. C. Zhou, “In Situ Reaction Synthesis and Decomposition of Ta2AlC,” Inter. J. Mater. Res., 99, 8-13 (2008).
9. C. F. Hu, Y. C. Zhou, and Y. W. Bao, “Material Removal and Surface Damage in EDM of Ti3SiC2 Ceramic,” Ceram. Inter., 34, 537-41 (2008).
10. C. F. Hu, J. Zhang, J. M. Wang, F. Z. Li, J. Y. Wang, and Y. C. Zhou, “Crystal Structure of V4AlC3, a New Layered Ternary Carbide,” J. Am. Ceram. Soc., 91, 636-9 (2008).
11. C. F. Hu, L. F. He, J. Zhang, Y. W. Bao, J. Y. Wang, M. S. Li, and Y. C. Zhou, “Microstructure and Properties of Bulk Ta2AlC Ceramic Synthesized by an In Situ Reaction/Hot Pressing Method,” J. Eur. Ceram. Soc., 28, 1679-85 (2008).
12. C. F. Hu, F. Z. Li, L. F. He, M. Y. Liu, J. Zhang, J. M. Wang, Y. W. Bao, J. Y. Wang, and Y. C. Zhou, “In-situ Reaction Synthesis, Physical and Mechanical Properties of Nb4AlC3,” J. Am. Ceram. Soc., 91, 2258-63 (2008).
13. C. F. Hu, L. F. He, M. Y. Liu, X. H. Wang, J. Y. Wang, M. S. Li, Y. W. Bao, and Y. C. Zhou, “In Situ Reaction Synthesis and Mechanical Properties of V2AlC,” J. Am. Ceram. Soc., 91, 4029-35 (2008).
14. J. M. Wang, J. Y. Wang, Y. C. Zhou, and C. F. Hu, “Phase Stability, Electronic Structure and Mechanical Properties of Ternary-layered Carbide Nb4AlC3: An Ab Initio Study,” Acta Mater., 56, 1511-8 (2008).
15. J. Y. Wang, J. M. Wang, Y. C. Zhou, Z. J. Lin, and C. F. Hu, “Ab Initio Study of Polymorphism in Layered Ternary Carbide M4AlC3 (M = V, Nb and Ta),” Scripta Mater., 58, 1043-6 (2008).
16. C. F. Hu*, Y. Sakka, H. Tanaka, T. Nishimura, and S. Grasso, “Low Temperature Thermal Expansion, High Temperature Electrical Conductivity, and Mechanical Properties of Nb4AlC3 Ceramic Synthesized by Spark Plasma Sintering,” J. Alloys Compd., 487, 675-81 (2009).
17. F. Z. Li, C. F. Hu, J. M. Wang, B. Liu, J. Y. Wang, and Y. C. Zhou, “Crystal Structure and Electronic Structure of a Novel Hf3AlN Ceramic,” J. Am. Ceram. Soc., 92, 476-80 (2009).
18. A. J. Li, C. F. Hu, M. S. Li, and Y. C. Zhou, “Joining of Ti–Al–C Ceramics by Oxidation at Low Oxygen Partial Pressure,” J. Eur. Ceram. Soc., 29, 2619-25 (2009).
19. S. Grasso, Y. Sakka, G. Maizza, and C. F. Hu, “Pressure Effect on the Homogeneity of Spark Plasma Sintered Tungsten Carbide Powder,” J. Am. Ceram. Soc., 92, 2418-21 (2009).
20. W. Zhang, N. Travitzky, C. F. Hu, Y. C. Zhou, and P. Greil, “Reaction Hot Pressing and Properties of Nb2AlC,” J. Am. Ceram. Soc., 92, 2396-99 (2009).
21. S. Grasso, B. N. Kim, C. F. Hu, G. Maizza, and Y. Sakka, “Highly Transparent Pure Alumina Fabricated by High Pressure Spark Plasma Sintering,” J. Am. Ceram. Soc., 93, 2460-62 (2010).
22. C. F. Hu, L. F. He, F. Z. Li, L. Wu, J. Y. Wang, M. S. Li, Y. W. Bao, and Y. C. Zhou, “In-situ Reaction Synthesis and Mechanical Properties of TaC-TaSi2 Composites,” Int. J. Appl. Ceram. Technol., 7, 697-703 (2010).
23. C. F. Hu*, Y. Sakka, T. Uchikoshi, T. S. Suzuki, B. K. Jang, S. Grasso, and G. Suarez, “Synthesis, Microstructure and Mechanical Properties of ZrB2 Ceramic Prepared by Mechanical Alloying and Spark Plasma Sintering,” Key. Eng. Mater., 434-435, 165-68 (2010).
24. C. F. Hu*, Y. Sakka, H. Tanaka, T. Nishimura, and S. Grasso, “Synthesis, Microstructure and Mechanical Properties of (Zr,Ti)B2-(Zr,Ti)N Composites Prepared by Spark Plasma Sintering,” J. Alloys Compd., 494, 266-70 (2010).
25. C. F. Hu, Y. Sakka, H. Tanaka, T. Nishimura, S. Q. Guo, and S. Grasso, “Microstructure and Properties of ZrB2-SiC Composites Prepared by Spark Plasma Sintering Using TaSi2 as Sintering Additive,” J. Eur. Ceram. Soc., 30, 2625-31 (2010).
26. C. F. Hu, Y. Sakka, B. K. Jang, H. Tanaka, T. Nishimura, S. Q. Guo, and S. Grasso, “Microstructure and Properties of ZrB2-SiC and HfB2-SiC Composites Fabricated by Spark Plasma Sintering (SPS) Using TaSi2 as Sintering Aid,” J. Ceram. Soc. Jpn., 118, 997-1001 (2010).
27. C. F. Hu, Y. Sakka, H. Tanaka, T. Nishimura, and S. Grasso, “Fabrication of Textured Nb4AlC3 Ceramic by Slip Casting in a Strong Magnetic Field and Spark Plasma Sintering (SPS),” J. Am. Ceram. Soc., 94, 410-5 (2011).
28. C. F. Hu, Y. Sakka, S. Grasso, T. Suzuki, and H. Tanaka, “Tailoring Ti3SiC2 Ceramic via a Strong Magnetic Field Alignment (SMFA) Method Followed by Spark Plasma Sintering (SPS),” J. Am. Ceram. Soc., 94, 742-8 (2011).
29. C. F. Hu, Y. Sakka, S. Grasso, T. Nishimura, S. Q. Guo, and H. Tanaka, “Shell-like Nanolayered Nb4AlC3 Ceramic with High Strength and Toughness,” Scripta Mater., 64, 765-8 (2011).
30. C. F. Hu, Y. Sakka, T. Nishimura, S. Q. Guo, S. Grasso, and H. Tanaka, “Physical and Mechanical Properties of Highly Textured Polycrystalline Nb4AlC3 Ceramic,” Sci. Technol. Adv. Mater., 12, 044603 (2011).
31. S. Grasso, C. F. Hu, G. Maizza, B. N. Kim, and Y. Sakka, “Effects of Pressure Application Method on Transparency of SPSed Alumina,” J. Am. Ceram. Soc., 94, 1405-9 (2011).
32. X. B. Zhou, Q. Huang, C. F. Hu, and Q. Z. Tao, “High Saturation Magnetization Carbon Nanotube-Ni0.5Zn0.5Fe2O4 Composite Fabricated by Microwave Sintering,” J. Kunming Univ. Sci. Tech., 36, 160-163 (2011).
33. S. Grasso, C. F. Hu, O. Vasylkiv, T. Suzuki, S. Q. Guo, T. Nishimura, and Y. Sakka, “High Hardness B4C Oriented via Strong Magnetic Field Technique,” Scripta Mater., 64, 256-9 (2011).
34. S. Grasso, Y. Sakka, N. Rendtorff, C. F. Hu, G. Maizza, H. Borodianska, and O. Vasylkiv, “Modeling of the Temperature Distribution of Flash Sintered Zirconia,” J. Ceram. Soc. Jpn., 119, 1-3 (2011).
35. S. Q. Guo, C. F. Hu, and Y. Kagawa, “Mechanochemical Processing of Nanocrystalline Zirconium Diboride Powder,” J. Am. Ceram. Soc., 94, 3643-7 (2011).
36. S. Grasso, C. F. Hu, G. Maizza, M. J. Reece, and Y. Sakka, “Spark Plasma Sintering of Diamond Binderless WC Composites,” J. Am. Ceram. Soc., 95, 2423-8 (2012).
37. J. Zou, G. J. Zhang, C. F. Hu, T. Nishimura, Y. Sakka, H. Tanaka, J. Vleugels, and O. V. der Biest, “High-temperature Bending Strength, Internal Friction and Stiffness of ZrB2-20 vol.%SiC Ceramics,” J. Eur. Ceram. Soc., 32, 2519-27 (2012).
38. C. F. Hu, Y. Sakka, J. H. Gao, H. Tanaka, and S. Grasso, “Microstructure Characterization of ZrB2-SiC Composite Fabricated by Spark Plasma Sintering with TaSi2 Additive,” J. Eur. Ceram. Soc., 32, 1441-6 (2012).
39. C. F. Hu*, J. Zou, Q. Huang, G. J. Zhang, S. Q. Guo, and Y. Sakka, “Synthesis of Plate-like ZrB2 Grains,” J. Am. Ceram. Soc., 95, 85-8 (2012).
40. C. F. Hu*, Q. Huang, G. J. Zhang, and Y. Sakka, “Tailoring Plate-like Grained ZrB2 Ceramic via a Strong Magnetic Field Alignment Method Followed by Spark Plasma Sintering,” Key Eng. Mater., 512-515, 702-5 (2012).
41. N. M. Rendtorff, S. Grasso, C. F. Hu, G. Suarez, E. F. Aglietti, and Y. Sakka, “Dense Zircon (ZrSiO4) Ceramics by High Energy Ball Milling and Spark Plasma Sintering,” Ceram. Inter., 38, 1793-9 (2012).
42. N. M. Rendtorff, S. Grasso, C. F. Hu, G. Suarez, E. F. Aglietti, and Y. Sakka, “Zircon-zirconia (ZrSiO4-ZrO2) Dense Ceramic Composites by Spark Plasma Sintering,” J. Eur. Ceram. Soc., 32, 787-93 (2012).
43. J. Zou, G. J. Zhang, C. F. Hu, T. Nishimura, Y. Sakka, J. Vleugels, and O. V. der Biest, “Strong ZrB2-SiC-WC Ceramics at 1600oC,” J. Am. Ceram. Soc., 95, 874-8 (2012).
44. M. Mishra, Y. Sakka, C. F. Hu*, T. S. Suzuki, T. Uchikoshi, and L. Besra, “Textured Ti3SiC2 by EPD in a Strong Magnetic Field,” Key Eng. Mater., 507, 15-9 (2012).
45. L. Shen, C. F. Hu, Y. Sakka, and Q. Huang, “Study of Phase Transformation Behaviour of Alumina through Precipitation Method,” J. Phys. D: Appl. Phys., 45, 215302 (2012).
46. M. Mishra, Y. Sakka, C. F. Hu, T. S. Suzuki, T. Uchikoshi, and L. Besra, “Electrophoretic Deposition of Ti3SiC2 and Texture Development in a Strong Magnetic Field,” J. Am. Ceram. Soc., 95, 2857-62 (2012).
47. C. F. Hu*, H. B. Zhang, F. Z. Li, Q. Huang, and Y. W. Bao, “Review: New Phases’ Discovery in MAX Family,” Inter. J. Refra. Met. Hard Mater., 36, 300-12 (2013).
48. J. W. Zhang, C. F. Hu*, Y. G. Wang, and Q. Huang, “Interfacial Reactions between Polymer Derived SiC Fiber and Ti3Si(Al)C2,” Key Eng. Mater., 544, 238-44 (2013).
49. D. Qu, J. Hu, C. F. Hu*, Y. T. Wang, and L. Su, “Study on Performance of Ru-Ir-Ti/Ti Oxide Coating Anodes Prepared with Method of Surface Nitriding on Titanium,” Key Eng. Mater., 544, 87-91 (2013).
50. Z. Y. Pan, G. Y. Yang, Y. Lou, E. X. Xue, H. Z. Xu, X. G. Miao, J. L. Liu, C. F. Hu, and Q. Huang, “Morphology Control and Self-Setting Modification of a-Calcium Sulfate Hemihydrate Bone Cement by Addition of Ethanol,” Inter. J. Appl. Ceram. Technol., 10, E219-25 (2013).
51. Q. Wang, C. F. Hu*, S. Cai, Y. Sakka, and Q. Huang, “Synthesis of High Purity Ti3SiC2 Powder by Microwave Heating Method,” Inter. J. Appl. Ceram. Technol., 11, 911-8 (2014).
52. L. Shen, C. F. Hu, S. H. Zhou, A. Mukherjee, and Q. Huang, “Phase-dependent Photoluminescence Behavior of Cr-doped Alumina Phosphors,” Optical Mater., 35, 1268-72 (2013).
53. C. X. Wang, T. F. Yang, S. Y. Kong, J. R. Xiao, J. M. Xue, Q. Wang, C. F. Hu, Q. Huang, and Y. G. Wang, “Effect of He Irradiation on Ti3AlC2: Damage Evolution and Behavior of He Bubbles,” J. Nuclear Mater., 440, 606-11 (2013).
54. Q. Wang, S. Grasso, C. F. Hu*, H. B. Zhang, S. Cai, Y. Sakka, and Q. Huang, “Spark Plasma Sintering of Damage Tolerant and Machinable Y4Al2O9 Ceramic,” J. Adv. Ceram., 2, 193-200 (2013).
55. X. B. Zhou, L. Shen, L. Li, S. H. Zhou, T. M. Huang, C. F. Hu, W. M. Pan, X. H. Jing, J. Sun, L. Gao, and Q. Huang, “Microwave Sintering Carbon Nanotube/Ni0.5Zn0.5Fe2O4 Composites and Their Electromagnetic Performance,” J. Eur. Ceram. Soc., 33, 2119-26 (2013).
56. X. B. Zhou, L. Shen, L. Li, T. M. Huang, C. F. Hu, W. M. Pan, X. H. Jin, J. Sun, L. Gao, and Q. Huang, “Preparation of Nanocrystalline-coated Carbon Nanotube/ Ni0.5Zn0.5Fe2O4 Composite with Excellent Electromagnetic Property as Microwave Absorber,” J. Phys. D: Appl. Phys., 46, 145002 (2013).
57. H. Porwal, P. Tatarko, S. Grasso, C. F. Hu, A. R. Boccaccini, I. Dlouhu, and M. Reece, “Toughened and Machinable Glass Matrix Composites Reinforced with Graphene and Graphene-oxide Nano Platelets,” Sci. Technol. Adv. Mater., 14, 055007 (2013).
58. Z. Y. Pan, Y. Lou, G. Y. Yang, X. Ni, M. C. Chen, H. Z. Xu, X. G. Miao, J. L. Liu, and C. F. Hu, “Preparation of Calcium Sulfate Dihydrate and Calcium Sulfate Hemihydrate with Controllable Crystal Morphology by Using Ethanol Additive,” Ceram. Inter., 39, 5495-5502 (2013).
59. B. W. Wei, D. Qu, C. F. Hu*, F. Z. Li, T. L. Zhou, R. J. Xie, and Z. M. Zhou, “Synthesis and Physical Properties of Graphene Reinforced Copper Composites,” Adv. Mater. Res., 833, 310-4 (2014).
60. D. Qu, F. Z. Li, H. B. Zhang, Q. Wang, T. L. Zhou, C. F. Hu*, and R. J. Xie, “Preparation of Graphene Nanosheet/copper Composite by Spark Plasma Sintering,” Adv. Mater. Res., 833, 276-9 (2014).
61. X. Q. Tang, H. B. Zhang, D. M. Du, D. Qu, C. F. Hu*, R. J. Xie, and Y. Feng, “Fabrication of W-Cu Functionally Graded Material (FGM) by Spark Plasma Sintering Method,” Inter. J. Refra. Met. Hard Mater., 42, 193-9 (2014).
62. S. Grasso, P. Tatarko, S. Rizzo, H. Porwal, C. F. Hu, Y. Katoh, M. Salvo, M. J. Reece, and M. Ferraris, “Joining of β-SiC by Spark Plasma Sintering,” J. Eur. Ceram. Soc., 34, 1681-6 (2014).
63. H. Barzegar Bafrooei, E. Taheri Nassaj, T. Ebadzadeh, and C. F. Hu, “Reaction Sintering of Nano-sized ZnO-Nb2O5 Powder Mixture: Sintering Behavior, Microstructure and Microwave Dielectric Properties,” J. Mater. Sci., 25, 1620-6 (2014).
64. H. B. Bafrooei, E. T. Nassaj, T. Ebadzadeh, and C. F. Hu, “A Comparative Study of ZnNb2O6 Nanoceramics Synthesized by High Energy Ball Milling and Subsequent Conventional and Microwave Annealing,” J. Mater. Sci., 25, 1770-7 (2014).
65. K. Sato, M. Mishra, H. Hirano, C. F. Hu, and Y. Sakka, “Pressureless Sintering and Reaction Mechanisms of Ti3SiC2 Ceramic,” J. Am. Ceram. Soc., 97, 1407-12 (2014).
66. Q. Z. Tao, C. F. Hu*, S. Lin, H. B. Zhang, F. Z. Li, D. Qu, M. L. Wu, Y. P. Sun, Y. Sakka, and M. W. Barsoum, “Coexistence of Ferromagnetic and Reentrant Cluster Glass State in the Layered (Cr1-xMnx)2GeC,” Mater. Res. Lett., 2, 192-8 (2014).
67. H. B. Zhang, C. F. Hu*, J. J. Lv, S. Grasso, M. Mishra, Y. Yamauchi, B. N. Kim, and Y. Sakka, “Microstructure and Adsorption Property of Nano Carbide-derived Carbon Synthesized at Ambient Temperature,” Mater. Lett., 130, 188-91 (2014).
68. B. Zhang, J. Yang, L. Yu, L. M. Pan, T. Qiu, and C. F. Hu, “Study on Mechanical Properties of NbC Reinforced Nb4AlC3 Composites Prepared by In Situ Hot-pressing Sintering,” J. Syn. Cryst., 5, 1144-8 (2014).
69. F. Z. Li, H. B. Zhang, Q. Wang, D. Qu, T. L. Zhou, B. N. Kim, Y. Sakka, C. F. Hu, and Q. Huang, “Microwave Sintering of Ti3Si(Al)C2 Ceramic,” J. Am. Ceram. Soc., 97, 2731-5 (2014).
70. H. B. Bafrooei, E. T. Nassaj, T. Ebadzadeh, and C. F. Hu, “Sintering Behavior and Microwave Dielectric Properties of Nano Zinc Niobate Powder,” Ceram. Inter., 40, 14463-70 (2014).
71. E. T. Nassaj, H. B. Bafrooei, C. F. Hu, and T. Ebadzadeh, “Microwave Sintering of Nanopowder ZnNb2O6: Densification, Microstructure and Microwave Dielectric Properties,” Phys. B, 454, 35-41 (2014).
72. H. B. Zhang, C. F. Hu*, K. Sato, S. Grasso, M. Estili, S. Q. Guo, K. Morita, H. Yoshida, T. Nishimura, T. S. Suzuki, B. N. Kim, and Y. Sakka, “Tailoring Ti3AlC2 Ceramic with High Anisotropic Physical and Mechanical Properties,” J. Eur. Ceram. Soc., 35, 393-7 (2014).
73. B. N. Kim, K. Hiraga, A. Jeong, C. F. Hu, T. S. Suzuki, J. D. Yun, and Y. Sakka, “Transparent ZnAl2O4 Ceramics Fabricated by Spark Plasma Sintering,” J. Ceram. Soc. Jpn., 122, 784-7 (2014).
74. B. R. Bian, J. H. He, J. Du, W. X. Xia, J. Zhang, J. P. Liu, W. Li, C. F. Hu, and A. R. Yan, “Growth Mechanism and Magnetic Properties of Monodisperse L10-Co(Fe)Pt@C Core–shell Nanoparticles by One-step Solid-phase Synthesis,” Nanoscale, 7, 975-80 (2015).
75. S. Q. Guo, C. F. Hu, H. Gao, Y. Tanaka, and Y. Kagawa, “SiC(SCS-6) Fiber-reinforced Ti3AlC2 Matrix Composites: Interfacial Characterization and Mechanical Behavior,” J. Eur. Ceram. Soc., 35, 1375-84 (2015).
76. T. B. Wang, C. C. Jin, J. Yang, C. F. Hu, and T. Qiu, “Physical and Mechanical Properties of Boron Nitride Ceramic Fabricated by Pressureless Sintering without Additive,” Adv. Appl. Ceram., 114, 273-6 (2015).
77. C. F. Hu*, B. N. Kim, Y. J. Park, M. Estili, S. Grasso, K. Morita, H. Yoshida, T. Nishimura, S. Q. Guo, and Y. Sakka, “Nano ZrO2-TiN Composites with High Strength and Conductivity,” J. Ceram. Soc. Jpn., 123, 86-9 (2015).
78. C. F. Hu*, B. N. Kim, Y. J. Park, K. Morita, H. Yoshida, S. Grasso, H. B. Zhang, S. Q. Guo, and Y. Sakka, “Microstructure and Mechanical Properties of Nano ZrO2-10 vol.% TiN Composite Fabricated by Spark Plasma Sintering,” J. Ceram. Proc. Res., 16, 1-6 (2015).
79. C. F. Hu, C. C. Lai, Q. Z. Tao, J. Lu, J. Halim, L. C. Sun, J. Zhang, J. Yang, B. Anasori, J. Y. Wang, Y. Sakka, L. Hultman, P. Eklund, J. Rosén, and M. W. Barsoum, “Mo2Ga2C: A New Ternary Nanolaminated Carbide,” Chem. Commun., 51, 6560-3 (2015).
80. H. Porwal, M. Estili, A. Grünewald, S. Grasso, R. Detsch, C. F. Hu, Y. Sakka, A. R. Boccaccini, and M. J. Reece, “45S5 Bioglass®-MWCNT Composite: Processing and Bioactivity,” J. Mater. Sci.-Mater. M., 26, 199 (2015).
81. C. F. Hu*, C. Li, J. Halim, S. Kota, D. Tallman, and M. W. Barsoum, “On the Rapid Synthesis of the Ternary Mo2GaC,” J. Am. Ceram. Soc., 98, 2713-5 (2015).
82. H. P. Ning, G. D. Mastrorillo, S. Grasso, B. L. Du, K. Simpson, T. Mori, C. F. Hu, Y. Xu, J. Tunbridge, G. Maizza, and M. J. Reece, “Enhanced Thermoelectric Performance of Porous Antimony Doped Magnesium Tin Silicide by Spark Plasma Sintering,” J. Mater. Chem. A., 3, 17426 (2015).
83. C. C. Jin, T. B. Wang, C. F. Hu, T. Liang, J. Yang, and T. Qiu, “Fabrication and Properties of AlN/BN Composite Ceramics by Hot-pressing Sintering,” J. Syn. Cryst., 44, 1591-6 (2015).
84. C. C. Jin, T. B. Wang, L. M. Pan, J. Yang, C. F. Hu, and T. Qiu, “Preparation and
Properties of Sintering Additive-free AlN-BN Composite Ceramics by Hot-pressing Sintering,” J. Mater. Sci: Mater. Electron, 27, 2014-21 (2016).
85. H. B. Bafrooei, E. T. Nassaj, T. Ebadzadeh, C. F. Hu, A. Sayyadi-Shahraki, and T. Kolodiazhnyi, “Sintering Behavior and Microwave Dielectric Characteristics of ZnTiNb2O8 Ceramics Achieved by Reaction Sintering of ZnO-TiO2-Nb2O5 Nanosized Powders,” Ceram. Inter., 42, 3296-3303 (2016).
86. J. Gu, L. M. Pan, L. Yu, H. B. Zhang, W. J. Zou, C. H. Xu, C. F. Hu, and T. Qiu, “Mechanical Properties and Oxidation Behavior of Ti-doped Nb4AlC3,” J. Eur. Ceram. Soc., 36, 1001-8 (2016).
87. P. Tatarko, V. Casalegno, C. F. Hu, M. Salvo, M. Ferraris, and M. J. Reece, “Joining of CVD-SiC Coated and Uncoated Fiber Reinforced Ceramic Matrix Composites with Pre-sintered Ti3SiC2 MAX Phase Using Spark Plasma Sintering,” J. Eur. Ceram. Soc., 36, 3957-67 (2016).
88. J. M. Zhou, D. G. Zhu, L. T. Tang, X. S. Jiang, S. Chen, X. Peng, and C. F. Hu, “Microstructure and Properties of Powder Metallurgy Cu-1%Cr-0.65%Zr Alloy Prepared by Hot Pressing,” Vacuum, 131, 156-63 (2016).
89. C. Li, S. Kota, C. F. Hu, and M. W. Barsoum, “On the Synthesis of Low Cost, Ti-based MXenes,” J. Ceram. Sci. Technol., 7, 301-6 (2016).
90. C. F. Hu*, F. Shen, D. G. Zhu, H. B. Zhang, J. M. Xue, and X. G. Han, “Characteristics of Ti3C2X/Chitosan Films with Enhanced Mechanical Properties,” Frontiers in Energy Research, 4, 1-5 (2017).
91. O. Chaix-Pluchery, A. Thore, S. Kota, J. Halim, C. F. Hu, J. Rosen, T. Ouisse, and M. W. Barsoum, “First-order Raman Scattering in Three Layered Mo-based Ternaries: MoAlB, Mo2Ga2C and Mo2GaC,” J. Raman Spectro., 48, 631-8 (2017).
92. Y. L. Liu, D. G. Zhu, and C. F. Hu*, “Review of MAX Phases and Its Coating Fabricated by Spraying,” Adv. Ceram., 38, 21-8 (2017).
93. P. C. Guo, D. G. Zhu, Y. Gao, M. J. Li, and C. F. Hu, “Microstructure and Properties of CuCr Alloys Prepared by Hot Isostatic Pressing,” Electri. Eng. Mater., 4, 6-11 (2017).
94. L. D. Xu, D. G. Zhu, S. Grasso, T. S. Suzuki, A. Kasahara, M. Tosa, B. N. Kim, Y. Sakka, M. H. Zhu, and C. F. Hu*, “Effect of Texture Microstructure on Tribological Properties of Tailored Ti3AlC2 Ceramic,” J. Adv. Ceram., 6, 120-8 (2017).
95. Z. Lv, D. G. Zhu, H. Qian, L. D. Xu, and C. F. Hu, “Microstructure and Mechanical Properties of SiC-TiC Composites Fabricated by Hot Isostatic Pressing,” Powder Metall. Technol., 35, 163-70 (2017).
96. Y. H. Liu, B. R. Bian, C. F. Hu, P. P. Yi, J. Du, W. X. Xia, J. Zhang, A. R. Yan, Y. Li, and P. Liu, “Air Stable Fe Nanostructures with High Magnetization Prepared by Reductive Annealing,” J. Mater. Sci. Technol., 33, 1334-8 (2017).
97. J. M. Zhou, D. G. Zhu, H. W. Zhang, I. Bogomol, S. Grasso, and C. F. Hu*, “Microstructure and Indentation Damage Resistance of ZrB2-20vol.%SiC Ipo-eutectic Composites,” Inter. J. Appl. Ceram. Technol., 15, 619-24 (2018).
98. L. T. Tang, D. G. Zhu, Z. Sun, X. S. Jiang, T. F. Song, and C. F. Hu, “Microstructure and Mechanical Properties of Al-Ti-Zr Intermetallic Compounds Prepared by Vacuum Hot Pressing,” Vacuum, 150, 166-72 (2018).
99. L. D. Xu, D. G. Zhu, Y. L. Liu, T. S. Suzuki, B. N. Kim, Y. Sakka, S. Grasso, and C. F. Hu*, “Effect of Texture on Oxidation Resistance of Ti3AlC2,” J. Eur. Ceram. Soc., 38, 3417-23 (2018).
104. J. J. Niu, H. B. Zhang, Y. Wu, C. F. Hu, and X. Wu, “Pressure-induced Reversible Phase Transition on Mo2Ga2C and Its Transformation Mechanism,” J. Appl. Phys., 124, 085903 (2018).
107. Z. Sun, W. Li, Y. L. Liu, H. W. Zhang, D. G. Zhu, H. L. Sun, C. F. Hu, and S. Chen, “Design and Preparation of A Novel Degradable Low-temperature Co-fired Ceramic (LTCC) Composites,” Ceram. Inter., 45, 7001-10 (2019).
108. M. Biesuz, R. Sedlák, T. Saunders, A. Kovalčíková, J. Dusza, M. Reece, D. G. Zhu, C. F. Hu*, and S. Grasso, “Flash Spark Plasma Sintering of 3YSZ,” J. Eur. Ceram. Soc., 39, 1932-7 (2019).
109. Z. Zhang, S. Fu, F. Aversano, H. W. Zhang, C. F. Hu*, and S. Grasso, “Arc Melting: A Novel Method to Prepare Homogeneous Solid Solutions of Transition Metal Carbides (Zr, Ta, Hf),” Ceram. Inter., 45, 9316-9 (2019).
110. H. W. Zhang, D. D. Jayaseelan, I. Bogomol, M. J. Reece, C. F. Hu*, S. Grasso, and W. E. Lee, “A Novel Microstructural Design to Improve the Oxidation Resistance of ZrB2-SiC Ultra-high Temperature Ceramics (UHTCs),” J. Alloys Compd., 785, 958-64 (2019).
111. A. N. Jiang, L. D. Xu, D. Y. Ke, Q. Xu, J. Li, J. B. Wei, C. F. Hu*, and S. Grasso, “Cold Hydrostatic Sintering: From Shaping to 3D Printing,” J. Materio., 5, 496-501 (2019).
112. M. Biesuz, S. Fu, J. Dong, A. N. Jiang, D. Y. Ke, Q. Xu, D. G. Zhu, M. Bortolotti, M. Reece, C. F. Hu*, and S. Grasso, “High Entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3-x Perovskite by Reactive Spark Plasma Sintering,” J. Asian Ceram. Soc., 7, 127-32 (2019).
113. D. Y. Ke, A. N. Jiang, M. Biesuz, M. Bortolotti, G. Taveri, X. Y. Wang, M. Xu, J. Li, Y. G. Feng, C. F. Hu, and S. Grasso, “Ultra-low Energy Joining: An Invisible Strong Bond at Room Temperature,” J. Eur. Ceram. Soc., 39, 5358-63 (2019).
114. S. Fu, Y. L. Liu, H. W. Zhang, S. Grasso, and C. F. Hu*, “Synthesis and Characterization of High Purity Mo2Ti2AlC3 Ceramic,” J. Alloys Compd., 815, 152485 (2020).
115. J. Dong, Z. A. Wang, X. Zhao, M. Biesuz, T. Saunders, Z. Q. Zhang, C. F. Hu, and S. Grasso, “Contactless Flash Sintering Based on Cold Plasma,” Scripta Mater., 175, 20-3 (2020).
116. M. Biesuz, G. Taveri, A.I. Duff, E. Olevsky, D. G. Zhu, C. F. Hu, and S. Grasso, “A Theoretical Analysis of Cold Sintering,” Adv. Appl. Ceram., 119, 75-89 (2020).
117. J. Mei, G. A. Ayoko, C. F. Hu*, J. M. Bell, and Z. Q. Sun, “Two-dimensional Fluoride-free Mesoporous Mo2C MXene via UV-induced Selective Etching of Mo2Ga2C for Energy Storage,” Sustain. Mater. Technol., 25, e00156 (2020).
118. N. Liao, L. D. Xu, Y. X. Jin, Y. T. Xiao, S. Grasso, and C. F. Hu*, “Synthesis, Microstructure and Mechanical Properties of TiC-SiC-Ti3SiC2 Composites Prepared by In Situ Reactive Hot Pressing,” Inter. Appl. Ceram. Technol., 17, 1601-7 (2020).
119. X. J. Su, J. Dong, L. S. Chu, H. L. Sun, S. Grasso, and C. F. Hu*, “Synthesis, Microstructure and Properties of MoAlB Ceramics Prepared by In Situ Reactive Spark Plasma Sintering”, Ceram. Inter., 46, 15214-21 (2020).
120. S. Fu, D. G. Zhu, S. Grasso, and C. F. Hu*, “Research Progress of Magnetic MAX Phases Ceramics: A Review,” Adv. Ceram., 41, 217-30 (2020).
121. J. Mei, G. A. Ayoko, C. F. Hu*, and Z. Q. Sun, “Thermal Reduction of Sulfur-containing MAX Phase for MXene Production,” Chem. Eng. J., 395, 125111 (2020).
122. D. M. Sun, X. S. Jiang, L. L. Su, H. L. Sun, C. F. Hu, T. F. Song, and Z. P. Luo, “Fabrication and Mechanical Properties of Al2O3-TiC Ceramic Composites Synergistically Reinforced with Multi-walled Carbon Nanotubes and Graphene Nanoplates,” Ceram. Inter., 46, 20068-80 (2020).
123. Q. Xu, Y. C. Zhou, H. M. Zhang, A. N. Jiang, Q. Z. Tao, J. Lu, J. Rosén, Y. H. Niu, S. Grasso, and C. F. Hu*, “Theoretical Prediction, Synthesis and Crystal Structure Determination of New MAX Phase Compound V2SnC,” J. Adv. Ceram., 9, 481-92 (2020).
124. X. H. Liu, C. F. Hu, and L. S. Chu, “Microstructure, Compressive Strength and Sound Insulation Property of Fly Ash-based Geopolymeric Foams with Silica Fume as Foaming Agent,” Mater., 13, 3215 (2020).
125. Y. H. Niu, S. Fu, K. B. Zhang, B. Dai, H. B. Zhang, S. Grasso, and C. F. Hu*, “Synthesis, Microstructure and Properties of High Purity Mo2TiAlC2 Ceramics Fabricated by Spark Plasma Sintering,” J. Adv. Ceram., 9, 759-68 (2020).
126. X. X. Lv, Z. Y. Zhao, H. L. Sun, X. S. Jiang, C. F. Hu, T. F. Song, and Z. P. Luo, “Influence of Y2O3 Contents on Sintering and Mechanical Properties of B4C-Al2O3 Multiphase Ceramic Composites,” J. Mater. Res. Technol., 9, 11687-701 (2020).
127. H. J. Deng, J. Dong, F. Boi, T. Saunders, C. F. Hu, and S. Grasso, “Magnetic Field Generated during Electric Current Assisted Sintering: From Health and Safety Issues to Lorentz Force Effects,” Metals, 10, 1653 (2020).
128. M. Kermani, M. Biesuz, J. Dong, H. J. Deng, M. Bortolotti, A. Chiappini, M. J. Reece, V. M. Sglavo, C. F. Hu, and S. Grasso, “Flash Cold Sintering: Combining Water and Electricity,” J. Eur. Ceram. Soc., 40, 6266-71 (2020).
129. N. Luo, Y. Lin, M. Chamas, C. F. Hu, and S. Grasso, “Cold Isostatic Sintering to Enhance the Ionic Conductivity of LiFePO4,” Ceram. Inter., 47, 9296-9302 (2021).
130. M. Biesuz, T. Saunders, D. Y. Ke, M. Reece, C. F. Hu, and S. Grasso, “A Review of Electromagnetic Processing of Materials (EPM): Heating, Sintering, Joining and Forming,” J. Mater. Sci. Technol., 69, 239-72 (2021).
131. D. Y. Ke, P. Tatarko, N. Luo, C. F. Hu, and S. Grasso, “Cold Joining of Fused Silica: Boning Pressure and Surface Roughness Effects,” Mater. Lett., 282, 128836 (2021).
132. X. J. Su, Y. W. Bao, D. T. Wan, H. B. Zhang, L. D. Xu, S. Grasso, and C. F. Hu*, “Thermal Shock Resistance of Ti3SiC2 Ceramic under Extremely Rapid Thermal Cycling,” J. Alloys Compd., 866, 158985 (2021).
133. Y. Lin, N. Luo, M. Chamas, C. F. Hu, and S. Grasso, “Sustainable High Entropy Ceramics for Reversible Energy Storage: A Short Review,” Inter. Appl. Ceram. Technol., 18, 1560-9 (2021).
134. J. Dong, M. Biesuz, V. M. Sglavo, M. Kermani, X. J. Su, T. Saunders, C. F. Hu, and S. Grasso, “Athermal Field Effects in Flash Sintered Zirconia,” Adv. Appl. Ceram., 120, 193-201 (2021).
135. X. J. Su, B. T. Hu, Y. Quan, Y. R. Qin, Q. G. Feng, and C. F. Hu*, “Ablation Behavior and Mechanism of Bulk MoAlB Ceramic at ~1670-2550 oC in Air Plasma Flame,” J. Eur. Ceram. Soc., 41, 5474-83 (2021).
136. Y. Lin, N. Luo, E. Quattrocchi, F. Ciucci, J. H. Wu, M. Kermani, J. Dong, C. F. Hu, and S. Grasso, “Ultrafast High-temperature Sintering (UHS) of Li1.3Al0.3Ti1.7(PO4)3,” Ceram. Inter., 47, 21982-7 (2021).
137. J. Dong, M. Kermani, C. F. Hu, and S. Grasso, “Flash Cold Sintering of Nb2O5: Polarity and Electrolyte Effects,” J. Asian Ceram. Soc., 9, 934-9 (2021).
138. Y. R. Qin, Y. C. Zhou, L. F. Fan, Q. G. Feng, S. Grasso, and C. F. Hu*, “Synthesis and Characterization of Ternary Layered Nb2SB Ceramics Fabricated by Spark Plasma Sintering,” J. Alloys Compd., 878, 160344 (2021).
139. M. Kermani, J. Dong, M. Biesuz, Y. Lin, H. J. Deng, V. M. Sglavo, M. J. Reece, C. F. Hu, and S. Grasso, “Ultrafast High-temperature Sintering (UHS) of Fine Grained α-Al2O3,” J. Eur. Ceram. Soc., 41, 6626-33 (2021).
140. N. Luo, Y. Lin, J. Guo, E. Quattrocchi, H. J. Deng, J. Dong, C. F. Hu, and S. Grasso, “Spark Plasma Sintering of LiFePO4: AC Field Suppressing Lithium Migration,” Mater., 14, 2826 (2021).
141. B. T. Hu, Y. W. Bao, X. J. Su, D. T. Wan, Q. G. Feng, S. Grasso, and C. F. Hu*, “Comparative Investigation of Ultra Fast Thermal Shock of Ti3AlC2 Ceramic in Water and Air,” Inter. Appl. Ceram. Technol., 18, 1863-71 (2021).
142. N. Liao, X. J. Su, H. W. Zhang, Q. G. Feng, S. Grasso, and C. F. Hu*, “Synthesis of θ-Al2O3 Whiskers with Twins,” Metals, 11, 895 (2021).
143. R. X. Luo, M. Kermani, Z. L. Guo, J. Dong, C. F. Hu, F. Zuo, S. Grasso, Z. Q. Yan, Q. Wang, G. L. Nie, and H. T. Lin, “Ultrafast High-temperature Sintering of Silicon Nitride: A Comparison with the State-of-the-Art Technique,” J. Eur. Ceram. Soc., 41, 6338-45 (2021).
144. J. Dong, V. Pouchly, M. Biesuz, V. Tyrpekl, M. Vilémová, M. Kermani, M. Reece, C. F. Hu, and S. Grasso, “Thermally-insulated Ultra-fast High Temperature Sintering (UHS) of Zirconia: A Master Sintering Curve Analysis,” Scripta Mater., 203, 114076 (2021).
145. L. M. Fang, M. Ekholm, C. F. Hu, and Q. G. Feng, “Field Controllable Electronic Properties of MnPSe3/WS2 Heterojunction for Photocatalysis,” J. Cent. South Univ., 28, 3728 (2021).
146. J. J. Dai, Q. D. Hu, W. W. Sun, C. F. Hu, P. M. Oppeneer, and Q. G. Feng, “Behavior of Intrinsic Defects in BaF2 under Uniaxial Compressions: An Ab Initio Investigation,” Mater. Today Comm., 28, 102730 (2021).
147. Y. Quan, B. T. Hu, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Fabrication, Microstructure and Properties of In Situ V2C Reinforced Copper Composites,” Metals, 11, 1829 (2021).
148. H. J. Deng, M. Biesuz, M. Vilémová, M. Kermania, J. Veverkab, V. Tyrpeklc, C. F. Hu, and S. Grasso, “Ultrahigh Temperature Flash Sintering of Binder-less Tungsten Carbide within 6 s,” Mater., 14, 7655 (2021).
149. M. Kermani, V. Pouchly, Y. Lin, C. F. Hu, and S. Grasso, “Water-assisted Cold Isostatic Pressing to Enhance Sinterability of Alumina Ceramics,” Inter. Appl. Ceram. Technol., 19, 1249-54 (2022).
150. J. T. Wu, H. Y. Chen, X. Luo, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Design, Fabrication, Microstructure and Properties of Highly Porous Alumina Whisker Foam Ceramic,” Ceram. Inter., 48, 2776-81 (2022).
151. J. H. Wu, Y. Lin, M. Kermani, C. F. Hu, and S. Grasso, “Ultra-fast High Temperature Sintering (UHS) of Li1.5Al0.5Ge1.5P3O12 Electrolyte: A Rationalization of the Heating Schedule,” Ceram. Inter., 48, 6356-62 (2022).
152. M. Kermani, D. Y. Zhu, J. Li, J. H. Wu, Y. Lin, Z. Q. Dai, C. F. Hu, and S. Grasso, “Ultra-fast High Temperature Sintering (UHS) of Ultra-fine-grained Translucent Alumina Ceramics,” Open Ceram., 9, 100202 (2022).
153. G. X. Liu, B. Dai, Y. Ren, K. B. Zhang, D. J. Ye, C. F. Hu, W. T. Zhang, and S. Fu, “Microstructure and Magnetic Properties of Nickel-Zinc Ferrite Ceramics Fabricated by Spark Plasma Sintering,” Ceram. Inter., 48, 10412-9 (2022).
154. J. H. Wu, M. Kermani, D. Y. Zhu, J. Li, Y. Lin, C. F. Hu, and S. Grasso, “Carbon Free Ultra-fast High Temperature Sintering of Translucent Zirconia,” Scripta Mater., 210, 114476 (2022).
155. Y. Zeng, Q. Hu, M. Pan, K. Zhang, S. Grasso, C. F. Hu, and Q. G. Feng, “Investigation of Double Perovskites Sr2SmNbO6 and X2CoNbO6 (X = Sr,Ba) with SCAN Functional and Plus U Correction,” Adv. Powder Mater., 1, 100019 (2022).
156. Q. Q. Zhang, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Synthesis and Property Characterization of Ternary Laminar Zr2SB Ceramic,” J. Adv. Ceram., 11, 825-33 (2022).
157. X. J. Su, G. X. Liu, B. Dai, B. T. Hu, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Ablation Mechanisms of Ti3SiC2 Ceramic in Nitrogen Plasma Flame,” Ceram. Inter., 48, 14004-13 (2022).
158. Q. Q. Zhang, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Rapidly Synthesizing Hf2SB Ceramics by Thermal Explosion,” J. Eur. Ceram. Soc., 42, 3780-6 (2022).
159. M. U. Khan, L. J. Du, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Preparations and Applications of MXene-Metal Composites: A Review,” Coatings, 12, 516 (2022).
160. Z. K. Zhang, H. Gu, D. D. Sun, Y. L. Bai, and C. F. Hu, “Control of Multiphase Evolution and Al-deficiency in Reactive-sintered MoAlB Ceramics with Excessive Al,” J. Eur. Ceram. Soc., 42, 5505-14 (2022).
161. J. Mei, J. Shang, C. Zhang, D. C. Qi, L. Z. Kou, B. Wijerathne, C. F. Hu, T. Liao, J. MacLeod, and Z. Q. Sun, “MAX‐phase Derived Tin Diselenide for 2D/2D Heterostructures with Ultralow Surface/Interface Transport Barriers toward Li‐/Na‐ions Storage,” Small Methods, 6, 2200658 (2022).
162. Y. Lin, M. Biesuz, M. Bortolotti, L. Y. Shen, J. H. Wu, P. Y. Baptiste, J. Yu, F. Ciucci, V. M. Sglavo, C. F. Hu, and S. Grasso, “Impact of Reducing Conditions on the Stabilization of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O High Entropy Oxide,” Ceram. Inter., 48, 30184-90 (2022).
163. Q. H. Jiang, X. W. Zeng, and C. F. Hu*, “A Promising Layered Thermoelectric Metallic Ceramic with Ultra-high Temperature Stability: Mo2Ti2AlC3,” J. Alloys Compd., 922, 166212 (2022).
164. Z. Q. Dai, L. L. Cong, F. Zuo, M. Biesuz, K. Chen, M. Bortolotti, M. Kermani, Y. Lin, V. Tyrpekl, C. F. Hu, F. Boi, H. T. Lin, M. Reece, and S. Grasso, “Ultra-low Energy Processing of Graphite: A Fast-track Journey towards Carbon Neutrality,” Appl. Mater. Today, 29, 101594 (2022).
165. J. J. Chen, Z. Y. Huang, J. Q. Qi, M. Deng, Y. Shi, C. F. Hu, and H. M. Wang, “Preparation, Mechanical Properties and Oxidation Behavior of (Ti0.25Zr0.25Nb0.25Ta0.25)C High-entropy Ceramics,” Bull. Chin. Ceram. Soc., 41, 2117-25 (2022).
166. Q. Q. Zhang, Y. C. Zhou, X. Y. San, W. B. Li, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Zr2SeB and Hf2SeB: Two New MAB Phase Compounds with the Cr2AlC-type MAX Phase (211 phase) Structure,” J. Adv. Ceram., 11, 1764-6 (2022).
167. S. J. Zhou, M. U. Khan, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Enhanced Properties of Tailored MoAlB Ceramics by Hot Forging,” J. Eur. Ceram. Soc., 42, 6918-24 (2022).
168. Y. Quan, Q. Q. Zhang, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, S. Grasso, and
C. F. Hu*, “β-Ta4AlC3 Is Not Formed by Transformation from α-Ta4AlC3,” J. Eur. Ceram. Soc., 42, 7377-80 (2022).
169. Z. Q. Dai, V. Tyrpekl, F. Boi, J. X. Song, C. F. Hu, and S. Grasso, “Cold Sintering of Van Der Waals Layered Compounds,” Open Ceram., 12, 100304 (2022).
170. K. Chen, X. R. Chang, C. F. Hu, and Q. G. Feng, “Novel Phase Transition for XSnN2 (X = Mg, Zn) under Uniaxial Compression,” Mater. Today Comm., 33, 104753 (2022).
171. W. Ding, B. T. Hu, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Ultra-fast Thermal Shock Evaluation of Ti2AlC Ceramic,” Materials, 15, 6877 (2022).
172. K. Chen, X. R. Chang, Y. Zeng, C. F. Hu, and Q. G. Feng, “Phase Transition and Properties of Ternary MgGeN2 under Pressure: A First Principles Investigation,” Phys. Scr., 97, 125826 (2022).
173. M. Kermani, C. F. Hu, and S. Grasso, “From Pit Fire to Ultrafast High-temperature Sintering (UHS): A Review on Ultrarapid Consolidation,” Ceram. Inter., 49, 4017-9 (2023).
174. Q. Q. Zhang, B. Wen, J. Luo, Y. C. Zhou, X. Y. San, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Synthesis of New Rare Earth Containing Ternary Laminar Sc2PbC Ceramic,” J. Eur. Ceram. Soc., 43, 1735-9 (2023).
175. Q. Q. Zhang, Y. C. Zhou, X. Y. San, W. B. Li, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Thermal Explosion Synthesis of First Te-containing Ternary Layered Hf2TeB Ceramic,” J. Eur. Ceram. Soc., 43, 173-6 (2023).
176. L. J. Du, Q. Q. Zhang, L. Cao, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, S. Grasso, and C. F. Hu*, “Synthesis, Microstructure and Property Characterization of Mo4Y2Al3B6 Ceramic Fabricated by Spark Plasma Sintering,” J. Eur. Ceram. Soc., 43, 1880-6 (2023).
177. X. Y. Qian, H. Yang, C. F. Hu, Y. Zeng, Y. D. Huang, X. Shang, Y. J. Wan, B. Jiang, and Q. G. Feng, “Effect of Potential Difference between Nano-Al2O3 Whisker and Mg Matrix on the Dispersion of Mg Composites,” Inter. J. Miner. Metal. Mater., 30, 104-11 (2023).
178. Y. C. Zhou, H. M. Xiang, and C. F. Hu, “Extension of MAX Phases from Ternary Carbides and Nitrides (X = C and N) to Ternary Borides (X = B, C, and N): A General Guideline,” Inter. J. Appl. Ceram. Technol., 20, 803-22 (2023).
179. J. H. Wu, M. Kermani, L. Cao, B. H. Wang, Z. Q. Dai, L. Fu, C. F. Hu, and S. Grasso, “Rapid Crystallization of Li1.5Al0.5Ge1.5(PO4)3 Glass Ceramics via Ultra-fast High-temperature Sintering (UHS),” Inter. J. Appl. Ceram. Technol., 20, 2125-30 (2023).
180. J. H. Wu, Y. Lin, C. F. Hu, S. Grasso, D. Y. Zhu, J. Li, A. Katz-Demyanitcz, and A. Goldstein, “Ultra-fast High-temperature Sintering of Transparent MgAl2O4,” Ceram. Inter., 49, 19537-40 (2023).
181. J. Cheng, Q. Q. Zhang, S. Fu, D. T. Wan, Y. W. Bao, L. S. Chu, Q. G. Feng, S. Grasso, and C. F. Hu*, “Synthesis and Characterization of Ternary Layered i-MAX (Mo2/3Y1/3)2AlC Ceramics Fabricated by Spark Plasma Sintering,” Inter. J. Appl. Ceram. Technol., 20, 2717-26 (2023).
182. H. Zhang, Q. Q. Jin, T. Hu, X. C. Li, Z. Z. Zhang, C. F. Hu, Y. C. Zhou, Y. Han, X. H. Wang, “Electron-irradiation-facilitated Production of Chemically Homogenized Nanotwins in Nanolaminated Carbides,” J. Adv. Ceram., 12, 1288-97 (2023).
183. H. J. He, B. T. Hu, S. A. Soomro, S. Fu, D. T. Wan, Y. W. Bao, Y. C. Zhou, Q. G. Feng, S. Grasso, and C. F. Hu*, “Synthesis, Microstructure, Physical and Mechanical Properties of Phase-pure Entropy-enhanced (Nb0.8Ti0.05Ta0.05V0.05M0.05)4AlC3 (M = Hf, Zr) Ceramics,” J. Eur. Ceram. Soc., 43, 5782-91 (2023).
184. M. Fu, H. Y. Chen, J. Cheng, L. S. Chu, Q. G. Feng, and C. F. Hu*, “Comparative Study of Preparation and Electrochemical Properties of Nb4C3Tx and (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx MXenes,” Metals, 13, 1548 (2023).
185. X. R. Chang, K. Chen, Y. Zeng, C. F. Hu, and Q. G. Feng, “Phase Transition and Electronic Properties of XGeN2 (X = Zn, Cd) under Uniaxial Compression,” Mater. Lett., 349, 134807 (2023).
186. J. Cheng, Q. Q. Zhang, S. Fu, D. T. Wan, Y. W. Bao, L. S. Chu, Q. G. Feng, and C. F. Hu*, “Synthesis, Microstructure and Properties of Ternary Layered i-MAX (Mo2/3M1/3)2AlC (M = Sc and Lu) Ceramics Fabricated by Spark Plasma Sintering,” J. Eur. Ceram. Soc., 43, 6774-82 (2023).
187. Q. Q. Zhang, J. Luo, B. Wen, Y. C. Zhou, L. S. Chu, Q. G. Feng, and C. F. Hu*, “Determination of New α-312 MAX Phases of Zr3InC2 and Hf3InC2,” J. Eur. Ceram. Soc., 43, 7228-33 (2023).
188. Q. Q. Zhang, B. Wen, J. Luo, Y. C. Zhou, X. Y. San, Y. W. Bao, L. S. Chu, Q. Q. Feng, S. Grasso, and C. F. Hu*, “Synthesis of New Lead-containing MAX Phases of Zr3PbC2 and Hf3PbC2,” J. Am. Ceram. Soc., 106, 6390-7 (2023).
189. H. Zhang, B. T. Hu, Y. W. Bao, L. S. Chu, Q. G. Feng, and C. F. Hu*, “Ablation Behavior and Mechanisms of Ti2AlC Ceramic at ~1600 ℃ in Nitrogen Plasma Flame,” Ceram. Inter., 49, 34697-704 (2023).
190. Z. Li, G. X. Liu, H. W. Yang, F. Liu, S. L. Yang, B. Dai, Y. Ren, F. Xu, and C. F. Hu, “Structure and Properties of Fiber-reinforced LiZn Ferrite Ceramics Prepared via Spark Plasma Sintering,” Ceram. Inter., 49, 34500-9 (2023).
191. K. Chen, L. Li, X. G. Chang, C. F. Hu, and Q. G. Feng, “A First-Principles Study of MgSnN2 Films Using a DFT-12 Approach,” Phys. Scri., 98, 095912 (2023).
192. Y. Yu, S. Fu, D. T. Wan, Y. W. Bao, L. S. Chu, Q. G. Feng, and C. F. Hu*, “Hot Forging Nb4AlC3 Ceramics with Enhanced Properties,” J. Adv. Ceram.,12, 2032-40 (2023).
193. X. R. Chang, K. Chen, C. F. Hu, and Q. G. Feng, “A First-Principles Investigation of MgGeN2 Under Uniaxial Compression,” Phys. Status Solidi B, 260, 2200417 (2023).
194. M. Kermani, J. H. Wu, C. F. Hu, and S. Grasso, “Grain Growth Kinetics of Alumina Ceramics: Impact of Thermal History,” J. Am. Ceram. Soc., DOI: 10.1111/jace.19456.
195. L. J. Du, Q. Q. Zhang, F. J. Zhang, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, and C. F. Hu*, “Synthesis and Characterization of Layered Quaternary Mo4/3Lu2/3AlB2 Ceramics Fabricated by Spark Plasma Sintering,” J. Eur. Ceram. Soc., 44, 1429-35 (2024).
196. H. Zhang, B. T. Hu, B. Dai, Y. W. Bao, L. S. Chu, Q. G. Feng, and C. F. Hu*, “Excellent Ablation Resistance of Ti3AlC2 Ceramic up to 1900 °C,” J. Eur. Ceram. Soc., 44, 1436-44 (2024).
197. L. Li, K. Chen, X. R. Chang, L. S. Chu, Y. G. Xu, C. F. Hu, and Q. G. Feng, “An Ab Initio Investigation of CdSnN2 under Uniaxial Compressions,” Phys. Status Solidi B, 261, 2300398 (2024).
198. L. Cao, Q. Q. Zhang, L. J. Du, S. Fu, D. T. Wan, Y. W. Bao, L. S. Chu, Q. G. Feng, and C. F. Hu*, “Synthesis and Characterization of High Entropy (TiVNbTaM)2AlC (M = Zr, Hf) Ceramics,” J. Adv. Ceram., 13, 237-46 (2024).
199. W. Ding, H. Chen, Y. W. Bao, L. S. Chu, Q. G. Feng, and C. F. Hu*, “Ultra-fast Thermal Shock Behaviors of Cr2AlC Ceramics up to 1300 °C,” Ceram. Inter., 50, 12074-80 (2024).
200. Q. Q. Zhang, J. Luo, B. Wen, Y. C. Zhou, X. Y. San, H. Chen, Q. G. Feng, and C. F. Hu*, “Synthesis of New Rare Earth Containing MAX Phases Sc2AC (A = Ga, In) by Spark Plasma Sintering,” J. Am. Ceram. Soc., 107, 3644-52 (2024).
201. H. Zhang, S. J. Zhou, H. Chen, L. S. Chu, Q. G. Feng, and C. F. Hu*, “Excellent Cyclic Plasma Ablation Resistance of MoAlB Ceramics,” J. Eur. Ceram. Soc., 44, 3675-82 (2024).
202. J. Luo, F. J. Zhang, B. Wen, Q. Q. Zhang, L. S. Chu, Y. C. Zhou, Q. G. Feng, and C. F. Hu*, “Theoretical Prediction and Experimental Synthesis of Zr3AC2 (A = Cd, Sb) Ceramics,” Mater., 17, 1556 (2024).
203. Q. Zhou, S. Fu, D. T. Wan, Y. W. Bao, L. S. Chu, Q. G. Feng, and C. F. Hu*, “Research on the Damage Mechanisms of Ti3AlC2 Ceramics in Pulsed Laser Processing,” Ceram. Inter., 50, 21945-50 (2024).
204. Z. Li, X. Y. Jin, C. F. Hu, B. Dai, Y. Ren, F. Xu, Y. Zhao, and X. W. Yuan, “Effects of Thermal, Stress, and Electric Fields on Microstructure and Ion Distribution of (Mg0.1Mn0.1Co0.1Ni0.2Ti0.1Cu0.1Zn0.2)Fe2.1O4 Spinel Ferrites,” Ceram. Inter., 50, 20260-74 (2024).
205. S. A. Soomro, M. I. Jahanger, M. K. Bangash, Y. C. Zhou, S. Fu, D. T. Wan, Y. W. Bao, Q. G. Feng, C. F. Hu*, “Enhanced Properties of Multi-element Soluted (Nb0.8Ti0.05Zr0.05Mo0.05M0.05)4AlC3 (M = Hf, Ta) Ceramics Synthesized by Spark Plasma Sintering,” Inter. J. Appl. Ceram. Technol., DOI:10.1111/ijac.14816.
206. Y. Yu, K. Chen, X. R. Chang, X. M. Ma, M. Pan, L. S. Chu, C. F. Hu, and Q. G. Feng, “Regulation of Monolayer MgGeN2 Thin Film with Uniaxial and Biaxial Strain,” Phys. Scri., 99, 065984 (2024).
207. L. Li, Y. Yu, X. R. Chang, Y. Zeng, L. S. Chu, X. M. Ma, C. F. Hu, and Q. G. Feng, “A More Accurate Investigation of XSiN2 (X = Ca, Sr, Ba) using A DFT-1/2 Scheme,” Solid State Comm., 389, 115580 (2024).
1. 主持,国家自然科学基金联合基金 (U1232136), 强磁场织构化高强韧、抗辐照纳米层状类贝壳仿生结构陶瓷,60万,2013.01-2015.12。 (结题)
2. 主持,国家自然科学基金主任基金(51741208),新型双Ga/Sn/In层三元层状陶瓷的发现及构性关系研究,15万,2018.01-2018.12。 (结题)
3. 主持,四川省杰出青年基金(2019JDJQ0009),新型纳米层状陶瓷合成、结构设计及氦离子辐照损伤研究,40万,2019.1-2021.12。(结题)
4. 主持,国家自然科学基金面上项目(52072311),强磁场织构化三元层状硼化物陶瓷微结构调控机理及择优性能设计,58万,2020.01-2024.12。(在研)
暂无内容
暂无内容
欢迎你报考胡春峰老师的研究生,报考有以下方式:
1、参加西南交通大学暑期夏令营活动,提交导师意向时,选择胡春峰老师,你的所有申请信息将发送给胡春峰老师,老师看到后将和你取得联系,点击此处参加夏令营活动
2、如果你能获得所在学校的推免生资格,欢迎通过推免方式申请胡春峰老师研究生,可以通过系统的推免生预报名系统提交申请,并选择意向导师为胡春峰老师,老师看到信息后将和你取得联系,点击此处推免生预报名
3、参加全国硕士研究生统一招生考试报考胡春峰老师招收的专业和方向,进入复试后提交导师意向时选择胡春峰老师。
4、如果你有兴趣攻读胡春峰老师博士研究生,可以通过申请考核或者统一招考等方式报考该导师博士研究生。